Chair of Distributed Systems and Security
School of Computation, Information and Technology

Technical University of Munich

Computer Networking and IT Security (INHN0012)

Tutorial 11

Problem 1 Fiow and congestion control with TCP

The most widely used transport protocol on the Internet is TCP. This implements mechanisms for flow and
congestion control.

a)* Discuss the differences between flow and congestion control. What are the objectives of each mecha-
nism?

* Flow control:
Prevention of overload situations at the receiver

» Congestion control:
Adaption to overload situations in the network

b) Assign each of the following terms to TCP flow or congestion control:
+ Slow-Start
* Receive window
» Congestion-Avoidance
» Multiplicative-Decrease

Only the receive window is part of the flow control, since the receiver can use it to tell the sender the
maximum amount of data it can send at once.

The remaining terms all belong to congestion control, with slow-start and congestion-avoidance being
the two congestion control phases of a TCP connection. Multiplicative decrease, on the other hand, is
the halving of the congestion control window when a segment is lost.

To analyze the data rate that can be achieved with TCP, we consider the course of a contiguous data
transmission in which the slow-start phase has already been completed. TCP is therefore in the congestion-
avoidance phase. We designate the individual windows as follows:

» Send window W, |Ws| = wg
* Receive window W,, |W;| = w,
« Traffic-control window W, |W;| = w,

We assume that the receive window is arbitrarily large, so that the transmit window is determined solely by
the congestion control window, i. e.,h. Ws = W,. No losses occur as long as the transmit window is smaller
than a maximum value x, i. e., ws < X.

If a full send window is confirmed, the currently used window will increase by exactly 1 MSS. If the send
window has reached the value x, exactly one of the sent TCP segments is lost. The sender detects the loss
by receiving the same ACK number multiple times. The station then halves the congestion control window,
but still remains in the congestion-avoidance phase, i. e., no new slow-start takes place. This approach
corresponds to a simplified variant of TCP-Reno (cf. lecture).

As concrete numerical values, we assume that the maximum TCP segment size (MSS) is 1460 B and the
RTT is 200 ms. Let the serialization time of segments be negligible compared to the propagation delay.
Segment loss occurs as soon as the transmit window reaches a size of wg > x = 16 MSS.

—Page1/13 -

c)* Create a graph plotting the current size of the transmit window ws measured in MSS over the time axis t
measured in RTT. In your diagram, at the time t, = 0's, you want the transmit window size to have just been
halved, so ws = x/2 applies. Draw the diagram in the time interval t = {0, ..., 27}.

» t/RTT

d)* How much time elapses before the congestion control window is reduced again after a segment loss as a
result of another segment loss?

After a segment loss, w, is reduced to x/2 and then increased again by 1 MSS per fully acknowledged
window. Thus, since the serialization time is negligible, a total of w, segments can be sent at time t,
which are confirmed at time f + RTT. Consequently, for the time until the maximum value is reached
again, we get

T= (g+1)-RTT=9~200ms=1.83.

e)* In general, determine the average loss rate L. Note: Since the behavior of TCP is periodic in this
idealized model, it is sufficient to consider only one period. Set the total number of transmitted segments in
relation to the number of lost segments (specification as a truncated fraction is sufficient).

—Page2/13 -

First, we determine the number n of segments that are transmitted during each ,sawtooth*

X ' x. X/271. X-(X+1) (§—1)%
n= i= i— i= _
X2+x X2 X
% "8t
3
=§X2+ZX
*Z%108

Exactly one segment is lost per ,sawtooth“. We therefore obtain for the loss rate

1

——=——~926-10°
3x2+3x 108

L:

f) Using the results from subtasks (c) and (e), determine the average achievable transmission rate in
kB/s during the TCP transmission phase under consideration. Note: Use the exact value (fraction) from

subtask e).

For the data rate we get
n-MSS
'rcp = T (1-10)
108 -1460B 107

1.8s 108
_ 107 - 14608

g)* What is the maximum transmission rate you could send over the channel with UDP without creating a
congestion? Take into account that the UDP header 12 B is smaller than the TCP header without options.

Apparently, 15 MSS can be reliably transferred. In addition, a segment carries 12 B more payload data
in UDP than in TCP.So we get

15. (MSS + 12B)
fuop = RTT
15. (1460 B + 12B)

0.2s
15-1472B

0.2s
110.40kB/s.

—Page3/13 -

Problem 2 Network Address Translation

This task will look at the forwarding of IP packets (IPv4) when using a NAT-enabled router. For the
mapping between public and private IP addresses, a NAT-enabled router has a mapping table that stores
the relationship between the local and the global port. Many NAT-enabled devices also store additional
information such as the remote IP address or the router’s own global IP address (e.g., if the router has more
than one global IP). We will refrain from doing this here.

Figure 2.1 shows the network topology. Router R1 has NAT enabled, using a private IP address on IF1 and
a public IP address on IF2. Router R2 does not use NAT. PC2 had already communicated with server 2,
which created the entry in R1’s NAT table (see the 2.1 figure). Where you have the freedom, choose sensible
values for the IP addresses and port numbers.

a)* Give PC1 and interface 1 of R1 a suitable IP address. The subnet is 10.0.0.0/24.

Possible are e.g.

+ PC1:10.0.0.1
* R11F1:10.0.0.254

b)* PC1 now establishes an HTTP connection to server 2. Specify the source IP, destination IP, source port,
destination port, and TTL fields of the IP or TCP header for the packets in the three highlighted locations in
Figure 2.1. Also, specify newly created entries in the NAT table of R1.

See figure 2.1.

* Between PC1 and R1: TTL = 64
Important for the source port is that the its larger than 1023 (values smaller than 1024 are
well-known-ports and can not be used as a source port). Furthermore it should not be larger
than 65535, because port numbers are 16 bit long. The destination port is given with TCP 80
(HTTP).

* R1and R2 TTL = 63
R1 replaces the private source IP with its own public IP address. The source port will usually (if
not already used otherwise) stay the same. Otherwise it will also be changed, e.g. incremented.
The choice of port numbers depends of the respective NAT type. If possible, we keep the same
port number. At this point a new entry in the NAT table is created: [10.0.0.1, 3627, 3627].

- Between R2 and Server 2 TTL = 62
No change because a normal router does not change IP addresses or port numbers. The TTL
field is obviously decremented.

c) Server 2 now answers PC1. In Figure 2.2, specify the header fields at the three named locations, as well
as newly created entries in the NAT table of R1, analogous to the previous subtask.

—Page4/13 -

We assume that the server send out packets with a TTL = 64

» Between Server 2 and R2 TTL = 64
The server first addresses the response to R1 (where else?).

» Between R2 and R1 TTL = 63
R2 does not change anything (except TTL).

+ Between R1 and PC1: TTL =62
R1 uses the entry in its own NAT table to find the IP address of the real receiver. Afterwards the
destination IP address and port number are replaced (if needed) and the packet is forwarded.

—Page5/13 -

— ¢l /9 abeq -

SrclP 131.159.24.19
DstIP 129.187.255.228
SrelP | 10.0.0.1 |68
DstlP | 129.187.255.228 SrcPort | 3627
@7 TTL 64 DstPort | 80
‘ SrcPort | 3627 ‘
PC1 DstPort | 80 PC3
10.0.0.1 77.77.77.77
IF1:]10.0.0.254 SrclP 131.159.24.19
\/Rj\ DstP | 129.187.255.228
E é‘\‘:\x Jogod @ R2 TTL | 62
\ IF2: 131.159.24.19 SrcPort | 3627
PC2
Local IP Local Port Global Port
10.0.0.5 13059 13059 M
10.0.0.1 3627 3627
Server 1 Server 2
10.0.0.10 129.187.255.228
Figure 2.1: Lésungsblatt fir Aufgabe 2a)/b)

—¢l /L 8ebed—

SrclP 129.187.255.228
DstIP 131.159.24.19
SrclP 129.187.255.228 L 63
DstlP | 10.0.0.1 SrcPort | 80
@7 TTL 62 DstPort | 3627
‘— SrcPort | 80 ‘
PC1 DstPort | 3627 PC3
77.77.77.77
IF1:110.0.0.254 SrclP 129.187.255.228
\/F”\ DstP | 131.159.24.19
E @“ > @ R2 TTL 64
PC2 \ IF2: 131.159.24.19 SrcPort | 80
10.0.0.5 DstPort | 3627
Local IP Local Port Global Port
10.0.0.5 13059 13059 M
10.0.0.1 3627 3627

Server 1
10.0.0.10

Figure 2.2: Solution sheet for problem 2c¢)

Server 2
129.187.255.228

d)* Server 1 now also establishes a TCP connection to server 2 on port 80. In doing so, it randomly chooses
the sender port 13059. Describe the problem that occurs on the NAT and how it is solved.

There is a collision with the first entry in the NAT table: The NAT router can no longer distinguish
whether responses from server 2 are destined for PC1 or server 2, since the only distinguishing feature
is the global port number.

The solution is that the NAT router checks whether the respective port is already in use before creating
new entries. If it is, the NAT server chooses a random port number from the ephemeral port range (or
increments the port number) and stores both the local and the new global port number. For incoming
packets, the port number is translated back in the L4 PDUs.

e)* R1 receives a packet from PC3 addressed to 131.159.24.19:13059. What will R1 do with this packet?
What problems may arise from it?

R1 will translate the destination address of the packet according to the NAT table and forward it to PC2,
even though the original entry was created for Server2.PC2 receives an ,unexpected” packet and must
be able to handle it. The erroneously often assumed firewall function of NAT cannot be enabled here.

f) Does a problem arise for PC2 when it receives a ,random* packet with TCP payload on a port with an
existing connection?

The packet probably has a different sender IP and source port and thus is not associated with the
existing connection.If the sender IP and source port ,coincidentally* match, the packet’s sequence
number (with high probability) does not fall within the currently valid receive window and is thus
discarded.

g)* What other distinguishing criteria could be used by a NAT router?

global IP (if the router has multiple interfaces/IP addresses configured),remote IP,remote portand the
protocol number(TCP or UDP).

h)* What problem arises when PC1 sends an echo request to server 2?

ICMP does not use port numbers therefore the NAT router can’t create an entry.The response is thus
discarded.

—Page8/13 -

i) Describe a possible solution for the problem which arose in the previous subproblem.

The NAT router colud in case of ICMP packet additionally to the protocol number use the ICMP
identifier as a replacement for the missing port numbers.In this case, however, the NAT router has to
also differentiate between the different L3-SDU protocols (TCP, UDP, ICMP, etc.).

i) What problem arises if a NAT router receives ICMP TTL-exceeded messages and wants to forward it to the
intended receiver (sender who caused the problem)? How can this problem be worked around?

TTL Exceeded messages are own ICMP messages whose identifier was not entered in the NAT
(messages are not generated in the own network, but from computers outside). An assignment to the
recipient is therefore not possible.ICMP TTL Exceeded contain besides the ICMP header also the
IP header and the first 8 payload bytes of the triggering packet'. This allows the NAT to identify the
triggering connection.For TCP and UDP the port numbers can be found here, for ICMP messages the
original identifier.

k)* Now PC3 wants to establish a HTTP connection with Server 1. Can this happen under the given
circumstances? (Explain!)

PC3 can’t address the packet directly to the address 10.0.0.10 because it’s a private IP address which
is not routed in the public internet. If PC3 knows the public IP of R1, behind which Server 1 is located,
it can address the packet to the IP address of R1 and TCP80; but R1 does (as far as the problem
statement says) not have a suitable entry in its NAT table and therefore can’t identify the correct
receiver of the packet.

[) How can this problem be avoided while mantaining a NAT?

In the NAT a static forwarding (so called portforwarding) can be configured.
Example: 10.0.0.10 80 80 With this Server 1 can be reached with the ip address of R1 via the router
R1 on Port 80 from the outside.

—Page9/13 -

Problem 3 TcP and Long Fat Networks (Homework)

In this task we consider so-called Long Fat Networks. This refers to connections that have a high transmission
rate but, in particular, also a high delay. Examples include satellite links which as a result of the long distance
have high propagation delays. In particular, we want to investigate the impact on TCP congestion control.

a)* For TCP, the send window is selected depending on the receive window as well as the congestion control
window. What is the exact relationship between the windows?

Ws = min (W, W)

Let two users be connected to the Internet at high transmission rates via a geostationary satellite. The RTT
between the two users is 800 ms, the transmission rate be r = 24 Mbit/s.

b)* How large should the transmission window (measured in bytes) be selected so that continuous transmis-
sion is possible?

The first ACK can arrive after one RTT at the earliest, provided that serialization times are neglected.
This results in the following for the transmission window

b
ws > RTT-r=8oo-10*3s-24.106;'t= 100-24 - 10°B/s = 2.4 MB.

c)* Why is the situation in subproblem b) a problem for TCP flow control? Hint: Have a look at the TCP
header.

Since the transmit window is chosen as a minimum of receive and congestion windows, and the
receiver informs the transmitter of its receive window via the receive window field, which is limited
to 16 bit, the transmit window is also limited to a maximum value of (2'® — 1) B = 65535 B.However,
according to subproblem b), we would need a transmit window of size 2.4 - 10° B.

d)* Read Section 2 of RFC 1323 (http://www.ietf.org/rfc/rfc1323.txt, see Appendix). Describe the
solution to the problem from subproblem c).

We need the TCP-Window-Scaling option, which ensures that the receive window is scaled by 2*.The
L,shift.cnt” field of the TCP window scaling option specifies the x exponent.

e) Determine the minimum value for the shift.cnt field of the TCP window scaling option.

—Page 10/13 -

http://www.ietf.org/rfc/rfc1323.txt

(2°.2¥) —1>2,4-10°
2.4-10°% +1
=1d(36.62) ~# 519 = x =6
Explanation: We look for the smallest exponent x such that the maximum receive-window is greater

than the value of 2.4 - 108 B calculated in subproblem b). The receive window is 16 bit wide, so it can
take the value oxffff = 2'® — 1 at most. So this value has to be scaled by 2*.

A quick look at the size of TCP’s sequence number space (|S| = 2%2, since SEQ and ACK numbers
are 32 bit long fields) shows that we don’t get a problem like in the “sliding window protocols” task.

f) Specify the header of the first TCP SYN packet that establishes the connection. To do this, use the
concrete numerical values from the specification. A TCP header is shown again in Figure 3.1 as a reminder.
There you will also find two forms for the solution.

Note: It is not necessary to fill the header in binary. However, please make it clear whether the numbers are
represented in hexadecimal, decimal, or binary.

Assume that the size of the traffic control window is currently half of the value calculated in sub-
problem b). The MSS is 1200 B and the TCP connection is currently in the congestion-avoidance
phase.

g) How long does it take for the window to fully utilize the line?
Note: The congestion control window is not directly affected by TCP window scaling.

The window is enlarged by 1 MSS per RTT. Consequently it takes

1,2-10°B _96-10°

1200B $=800s

h) Does the result of subproblem g) result in a problem?

Yes. It takes more than 10 min for TCP to fully utilize the receive window again — way too long.

—Page 11 /13 -

01t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port

Sequence Number

Acknowledgement Number

Data Offset Reserved 2(s|a|e|z|z2 (Receive) Window
Checksum Urgent Pointer

Options (0 or more multiples of 4 b)

Data

e~ N N T~ N\ NN —]

(a) TCP-Header

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port

Sequence Number

Acknowledgement Number

B(10) Reserved ofojofo]1]fo0 (Receive) Window

Checksum Urgent Pointer

kind = 3(10) length = 3(10) shift.cnt = 6(10) padding = 0x00

(b) Preprint

01t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port

Sequence Number

Acknowledgement Number

Reserved (Receive) Window

Checksum Urgent Pointer

(c) Another preprint

Figure 3.1: TCP headers for solving task 3

—Page 12/13 -

2. TCP WINDOW SCALE OPTION

2.1 Introduction
The window scale extension expands the definition of the TCP window to 32
bits and then uses a scale factor to carry this 32- bit value in the 16-bit
Window field of the TCP header (SEG.WND in RFC-793). The scale factor is
carried in a new TCP option, Window Scale. This option is sent only in a SYN
segment (a segment with the SYN bit on), hence the window scale is fixed in
each direction when a connection is opened. (Another design choice would be to
specify the window scale in every TCP segment. It would be incorrect to send
a window scale option only when the scale factor changed, since a TCP option
in an acknowledgement segment will not be delivered reliably (unless the ACK
happens to be piggy-backed on data in the other direction). Fixing the scale
when the connection is opened has the advantage of lower overhead but the
disadvantage that the scale factor cannot be changed during the connection.)

The maximum receive window, and therefore the scale factor, is determined by
the maximum receive buffer space. In a typical modern implementation, this
maximum buffer space is set by default but can be overridden by a user program
before a TCP connection is opened. This determines the scale factor, and
therefore no new user interface is needed for window scaling.

2.2 Window Scale Option

The three-byte Window Scale option may be sent in a SYN segment by a TCP. It
has two purposes: (1) indicate that the TCP is prepared to do both send and
receive window scaling, and (2) communicate a scale factor to be applied to
its receive window. Thus, a TCP that is prepared to scale windows should send
the option, even if its own scale factor is 1. The scale factor is limited to
a power of two and encoded logarithmically, so it may be implemented by binary
shift operations.

TCP Window Scale Option (WSopt):
Kind: 3 Length: 3 bytes
tomm S Fom e +
| Kind=3 |Length=3 |shift.cnt|
B Fo—m Fo—— +

This option is an offer, not a promise; both sides must send Window Scale
options in their SYN segments to enable window scaling in either direction. If
window scaling is enabled, then the TCP that sent this option will right-shift
its true receive-window values by 'shift.cnt' bits for transmission in
SEG.WND. The value 'shift.cnt' may be zero (offering to scale, while applying
a scale factor of 1 to the receive window).

This option may be sent in an initial <SYN> segment (i.e., a segment with the
SYN bit on and the ACK bit off). It may also be sent in a <SYN,ACK> segment,
but only if a Window Scale op- tion was received in the initial <SYN> segment.
A Window Scale option in a segment without a SYN bit should be ignored.

The Window field in a SYN (i.e., a <SYN> or <SYN,ACK>) segment itself is never
scaled.

— Page 13/13 -

