

Computer Networking and IT Security (INHN0012)

Tutorial 9

Problem 1 Static Routing

We consider the network topology of *TUMexam AG*, which is shown in Figure 1.1. The aim is to ensure the accessibility of subnets NET1-3 to each other and to the Internet.

Routers R1 and R2 are each to be assigned the highest usable IP address in the respective subnets. Transport networks with only two usable addresses each are available for the connection between the routers. The router with the lexicographically smaller name (e.g. $R1 \prec R2$) is to receive the lower IP address here. The gateway of the *TUMexam AG* is connected to the Internet via its public interface ppp0. Its default gateway is 93.221.23.1.

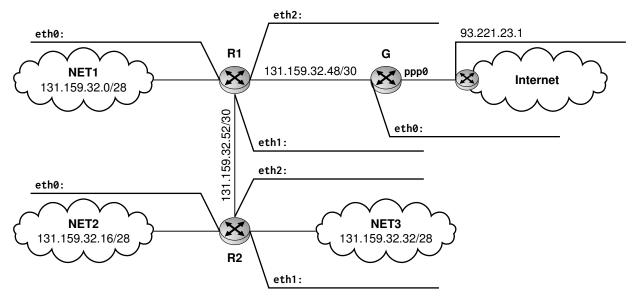


Figure 1.1: Network topology and IPv4 addressing

a)* Assign an IPv4 address to each interface of routers R1, R2, and G (router G only interface eth0). Enter the addresses directly in Figure 1.1.

Let the routing table of R2 be given as follows:

Destination	Next Hop	Iface
131.159.32.52/30	0.0.0.0	eth2
131.159.32.16/28	0.0.0.0	eth0
131.159.32.32/28	0.0.0.0	eth1
0.0.0/0	131.159.32.53	eth2

Table 1.1: F	Routing-Tabelle of R2
--------------	-----------------------

The entry 0.0.0.0 in the column "Next Hop" means that no gateway is needed (network is directly connected). The last line is the entry for the so-called *Default-Gateway*. Packets are forwarded there to all those networks for which no better route is known.

b) Specify the routing tables of routers R1 and G. Combine individual routes as far as possible and sort the entries in descending order of the prefix length.

Destination	Next Hop	lface	Destination	Next Hop	lface
			R	outing table of G	
R	outing table of R1				

c)* Why does Router G not necessarily need a route to the transport network 131.159.32.52/30?

In 2015, the management of the *TUMexam AG* decided to finally start the migration to IPv6. The additional IPv6 addressing is shown in Figure 1.2.

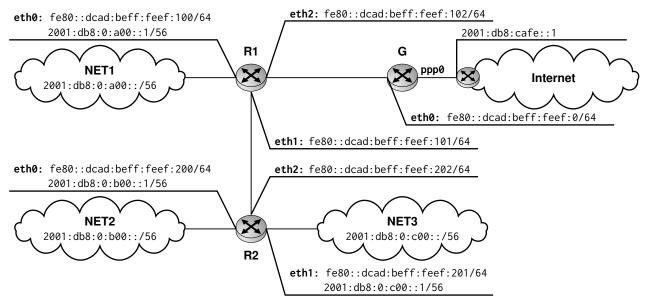


Figure 1.2: Network topology and IPv6 addressing

d)* What is the difference between the two IPv6 addresses fe80::dcad:beff:feef:201/64 and 2001:db8:0:c00::1/56 of interface eth1 of R2?

e)* Specify the first and last address of the subnet to which the address fe80::dcad:beff:feef:201/64 belongs.

f) In which subnet are the link-local addresses of the other devices from the figure 1.2 located?

g) Is it a problem that the fe80::/64 subnet seems to be assigned multiple times?

h) The default gateway of G is 2001:db8:cafe::1 and is reachable via its external interface ppp0. Set up the IPv6 routing table for Router G. To do this, group entries together again as far as possible and sort the

entries in descending order of the length of the prefix.

Destination	Next Hop	lface
	Pv6 Routing-Tabelle of G	

Problem 2 Distance Vector Routing

Assume the topology shown in Figure 2.1 with the four routers A to D. The link costs are indicated at each edge. We note the routing tables in short form as a vector $[(x_A, y_A), ..., (x_D, y_D)]$. The tuples (x, y) indicate the cost and the next hop to the destination.

For example, the shortest path from A to B is via B with a cost of 2, from A to C via C with a cost of 1, and from A to D via C with a cost of 2. Routers reach themselves by definition with cost 0. This then results in the routing table [(0,A) (2,B) (1,C) (2,C)] for router A (the position within the vector indicates the respective destination).

At the beginning, the routing tables are still empty, i.e., the routers do not even know their direct neighbors. This is indicated by the notation (/,/). The routers of course reach themselves with a cost of 0.

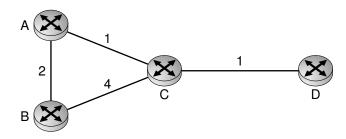


Figure 2.1: Network topology

The routers now start exchanging their distance vectors with their direct neighbors at periodic time intervals. For example, router B sends an update to router C, which only contains the distance to the respective destination (but not the next hop). Now if router A receives such an update from B and would find a route to D in it, A would know that he reaches D via B. The cost to D is then equal to the cost to B plus the cost to B to achieve the goal.

In the following, we will examine this behavior. However, since the result depends on the order in which updates are exchanged, we make the idealized assumption that all routers send their updates at exactly the same time.

a)* According to the above definitions, specify the routing tables of all four routers in the following steps. Abort as soon as a convergent state is reached.

Step	Router A	Router B
0	[(0,A) (/,/) (/,/) (/,/)]	[(/,/) (0,B) (/,/) (/,/)]
Step	Router C	Router D
0		
0		
0		

b) Which (graph) algorithm is used here?

Now the connection between nodes C and D fails. Nodes C and D notice this and set the corresponding path cost to infinity.

c) What happens in the following steps where the active nodes continue to exchange their distance vectors? After each step, specify the distance tables until the further result is clear.

Step	Router A	Router B
4		
Step	Router C	Router D
4		
4		
4		
4		
4		

d)* In the lecture, **Split Horizon**, **Triggered Updates**, and **Path Vector** were mentioned as possible countermeasures for the count-to-infinity problem. As a group, explain how these procedures work.