Computer Networking and IT Security (INHN0012)

Tutorial 7

Problem 1 Wireshark

Given is the hexdump in Figure 1.1 in network byte order of an Ethernet frame without checksum, which is to be analyzed in the following

0x0000	00	16	3e	ff	ff	ff	00	16	3e	6d	cd	0d	08	00	45	00
0x0010	00	58	9f	47	40	00	40	06	47	33	ac	10	fe	02	ac	10
0x0020	fe	01	00	16	da	e2	02	5d	78	9a	f2	3d	99	17	80	18
0x0030	00	e3	54	70	00	00	01	01	08	0a	b3	13	65	са	11	82
0x0040	53	20	53	53	48	2d	32	2e	30	2d	74	69	6e	79	73	73
0x0050	68	5f	6e	6f	76	65	72	73	69	6f	6e	20	5a	34	43	53
0x0060	69	31	5a	52	0d	0a										

Figure 1.1: Hexdump of an Ethernet frame, without checksum, in network byte order

Note: To solve this task, information from the cheatsheet is necessary.

a)* In figure 1.1 mark the start and the end of the Ethernet header.

b) Reason, by highlighting and describing relevant header fields, which protocol is used at layer 3.

c)* Describe how the length of the header on layer 3 is determined. Mark and name relevant sections in figure 1.1.

d)* Mark all layer 3 adresses and name them.

e) Mark all extensions headers contained in layer 3.

f) Name and describe the 3 smallest header fields of layer 3. Indicate the size of those fields.

g) If there is an L3 SDU, state its type and justify the statement. Otherwise, state your thought process and discuss how this situation could occur.

h) The bytes 0x0042 and following are payload of layer 4. Specify the ASCII representation of the first 7 B of the payload.

i) What application layer protocol is this probably and what is this protocol used for?

Problem 2 Subnetting

TUMexam AG is assigned the address ranges 131.159.32.0/22 and 131.159.36.0/24. The subdivision of those address ranges is left up to TUMexam AG. After a careful analysis the following requirements for the subnets and the minimal number of **usable** IP addresses are determined:

Subnet	NET 1	NET 2	NET 3	NET 4	NET 5
IPs	300	300	15	40	4

The IP address needed in for the router interface is included in those numbers.

a) Write down each first and last IP address of both given address ranges.

b) How many IP addresses does TUMexam AG have available? Can all of them be used to address hosts?

c)* Is it possible to aggregate both blocks of address ranges into one single subnet?

d) Divide both address ranges according to the analysis in order to get subnets with fitting sizes. Use as little IP addresses as possible. A large continous address range should remain available for future use. For every subnet you should indicate:

- the size of th subnet
- the amount of usable addresses
- the subnet in prefix notation
- the subnetmask in dotted-decimal-notation
- the network and broadcast addresses

Subnet	NET 1	NET 2	NET
Requirement			
Size			
Usable			
Prefix notation			
Subnetmask			
Network address			
Broadcast			
Subnet	NET 4	NET 5	
Requirement			
Size			
Usable			
Prefix notation			
Subnetmask			
Network address			