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Signals, information, and their meaning

Definition – Signals and symbols
Signals are time-dependent and measurable physical quantities. Defined measurable signal changes can be assigned a symbol. These
symbols are the physical representation of information.

Examples for signals

• light, e. g. transmission of Morse code in navigation

• voltage, e. g. telegraphy

• sound, e. g. language and music
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Figure 1: The first 3 s of „Sunrise Avenue – Hollywood Hills“
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Information and entropy

Definition – Information content
The information content of a symbol (sign or character) expresses how much information is transmitted by the sign.

The information content has the following properties:

• The less frequently a character occurs, the higher its information content.

• The information content of a string is the sum of the information content of the individual characters provided that characters occur
independently from each other.

• The information content of predictable characters is 0

The logarithm is the simplest function to define the information content with these properties.
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Information and entropy
Claude Elwood Shannon

∗ April 30, 1916 † February 24, 2001
AT&T Bell Labs: 1941–1958, then professor at the MIT

A Mathematical Theory of Communication
by Claude E. Shannon
In: The Bell System Technical Journal,
Vol. 27, No 3, 1948, pp. 379–423 and
Vol. 27, No 4, 1948, pp. 623–656
https://dl.acm.org/doi/pdf/10.1145/584091.584093

Communication in the Presence of Noise
by Claude E. Shannon
Proc. Inst. Radio Eng. (IRE) Vol. 37, 1949, pp.10-21
Online retyped copy of the paper:
https://www.noisebridge.net/images/e/e5/Shannon_

noise.pdf

Communication Theory of Secrecy Systems
by Claude E. Shannon
In: The Bell System Technical Journal,
Vol. 28, No. 4, 1949, pp. 656–715

http://netlab.cs.ucla.edu/wiki/files/

shannon1949.pdf

Prediction and Entropy of Printed English
by Claude E. Shannon
In: The Bell System Technical Journal,
Vol. 30, No. 1, 1951, pp. 50–64,
https://archive.org/details/bstj30-1-50

Chapter 1: Physical layer — Signals, information, and their meaning 1-5

https://dl.acm.org/doi/pdf/10.1145/584091.584093
https://www.noisebridge.net/images/e/e5/Shannon_noise.pdf
https://www.noisebridge.net/images/e/e5/Shannon_noise.pdf
http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf
http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf
https://archive.org/details/bstj30-1-50


Information and entropy

Definition – Information
Information consists in the uncertainty of being able to predict changes in a signal. The information content of a character x ∈ X from
an alphabet X depends on the probability p(x) that the information-carrying signal takes on the value or range of values assigned to this
character at the time of observation. The information content I of the character x with probability of occurrence p(x) is defined as

I(x) = − log2 p(x) mit [ I ] = bit.

Definition – Entropy
The average information content of a source is called entropy

H(X ) =
∑
x∈X

p(x)I(x) = −
∑
x∈X

p(x) log2 (p(x)) .

Note: We sometimes use the notations p(x) or px as a short form of Pr[X = x] (read as “the probability that the random variable X takes the
value x”)1.

1 Will be covered in Theory of Computation and Information Theory (INHN0013).
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Information and entropy

Examples:

1. Deterministic, discrete source that always emits the character ’A’:

X A A A A A . . . I(A) = − log2 (Pr[X = A]) = − log2(1) = 0 bit

2. Binary, discrete source which emits the characters ’0’ or ’1’ in a completely unpredictable way:

X 0 1 1 0 1 . . . I(0) = − log2 (Pr[X = 0]) = − log2(0.5) = 1 bit

I(1) = − log2 (Pr[X = 1]) = − log2(0.5) = 1 bit

The entropy H(X ) =
∑

i pi I(xi ) of thus source is

H(X ) = −(p0 log2(p0) + p1 log2(p1)) = −(−0.5− 0.5) = 1 bit/symbol.

3. Unordered characters of a long German text, i. e., X ∈ {A , B , C , ... , Z}:

X E W T I L E M H C A B . . . I(E) = − log2 (Pr[X = E]) = − log2(0.1740) ≈ 2.52 bit

The entropy H(X ) of this source is

H(X ) = −
N∑

i=1

pi log2(pi ) ≈ 4.0629 bit/symbol,

i. e., German text can be encoded with slightly more than 4 bit per character on average.

Note: This applies only to memoryless sources or sufficiently long texts, respectively. Otherwise, conditional probabilities must be considered.
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Signals and their meaning

What is the meaning of specific signal?
A signal transports information. Only by an interpretation rule this information gets a meaning, i. e., there must be a mapping between
symbols (physical signal values or value ranges) and data.

Example: Given a binary alphabet with the characters X ∈ {0,1}. The interpretation rule is

x =

{
0 s(t) ≤ 0,

1 otherwise.

What is the meaning of the signal shown below?
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Signals and their meaning

Open questions
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• At what time intervals are samples taken? (Time discretization)

• Does more frequent sampling also automatically mean more information? (Sampling theorem)

• How to round continuous signal values? (Quantization)

• What is the interpretation rule of sampled data? (Line coding)

• Which interfering factors play a role? (noise, attenuation, distortion, . . . ) (Channel coding)

• And how is such a signal generated in the first place? (Impulse shaping, modulation)
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Fourier Series

Periodic time signals can be understood as a superposition of sine and cosine oscillations of different frequencies:
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Fourier Series
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Fourier Series

Periodic time signals can be understood as a superposition of sine and cosine oscillations of different frequencies:
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Fourier Series

Periodic time signals can be understood as a superposition of sine and cosine oscillations of different frequencies:
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For the limit N → ∞ holds:

s(t) =
a0

2
+

∞∑
k=1

(ak cos(kωt) + bk sin(kωt))
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Fourier Series

Fourier series
A periodic signal s(t) can be reconstructed as the sum of weighted sinus and cosinus functions. The resulting series s(t) is called Fourier
series:

s(t) =
a0

2
+

∞∑
k=1

(ak cos(kωt) + bk sin(kωt)) .

The sum component with index k is called the k -harmonic. The constant component a0/2 represents a shift of the signals amplitude
regarding the y-axis and therefore is a constant factor of the function. The angular frequency ω = 2π/T defines the periodicity T of the
signal

The weights ak und bk can be calculated as follows:

ak =
2

T

∫ T

0

s(t) cos(kωt) dt and bk =
2

T

∫ T

0

s(t) sin(kωt) dt .
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Signal properties

• Calculating the coefficients ak and bk can be done through simple calculations

• Some signal properties can be seen directly:

0 1 2 3 4

−1

0

1 ∫ T/2

0

s(t) dt

∫ T

T/2

s(t) dt

Zeit t [s]

S
ig

na
la

m
pl

itu
de

s(
t)

• Point symmetry regarding
(

T/2,0
)

⇒ a0 =
2

T

∫ T

0

s(t) dt = 0

• No constant component

Question: What holds for the signal s ′(t) = s(t) + c with c > 0?
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• All weights of the cosinus components are zero, that is ak = 0 ∀k ∈ N
• Reason: s(t) is in-phase with the sinus

Question: What happens if we shift s(t) by 90°?
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Fourier Transform

So far, we have only looked at periodic signals. So what happens if we introduce non-periodic signals to the equation?

• We cannot use the fourier series anymore
• We result with a continuous spectrum, rather than a discrete one

Fourier Transformation
The fourier transform of a steady rising, integrable function s(t) is defined as

s(t) b r S(ω) =

∫ ∞

−∞
s(t)e−jωt dt =

∫ ∞

−∞
s(t) (cos(ωt) − j sin(ωt)) dt ,

where j denotes the imaginary unit and ω = 2πf the angular frequency. The equivalency e jx = cos(x) + j sin(x) is known as Euler’s formula.

Example: Square impulse and associated spectrum
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Sampling, reconstruction, and quantization

Naturally occurring signals are continuous in time and continuous in value, i.e., they take on arbitrary real values at infinitely many points in
time.

Problem for computers:

• limited memory

• limited precision

Solution approach: Discretization of signals in the

• time domain (sampling) and

• value domain (quantization).

A discrete-time and discrete-value signal is digital and is stored in fixed-length words.

A Q 0001 0010 0011

Comparison: Usage of fixed or floating point numbers instead of real numbers corresponds to rounding (quantization) to a finite number of
discrete steps.
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Sampling

The signal s(t) is sampled using the unit pulse (Dirac pulse) δ[t ] at equidistant intervals Ta (sampling interval) for n ∈ Z:

ŝ(t) = s(t)
∞∑

n=−∞
δ[t − nTa ], with δ[t − nTa ] =

{
1 t = nTa ,

0 otherwise.

Since ŝ(t) is nonzero only at times nTa for integer n, we agree on the notation ŝ[n] for discrete-time but continuous-value signals.
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Figure 2: Time continuous signal s(t)
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0 1 2 3 4

−0.5

0

0.5

1

Time t [s]

s(t)
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Reconstruction

By means of the samples ŝ[n] it is possible to approximate or even reconstruct the original signal s(t):

s(t) ≈
∞∑

n=−∞
ŝ[n] · sinc

(
t − nTa

Ta

)
.

• Samples are support points and

• serve as weights for a suitable approximate function (trigonometric interpolation, cf. polynomial interpolation).
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Figure 3: Samples ŝ[n]
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Figure 3: The sum of the weighted functions approaches the original signal depending on the number of summing elements.
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Reconstruction

Under which conditions is a lossless reconstruction possible?

• Multiplication in the time domain corresponds to convolution in the frequency domain:

s(t) · δ[t − nT ] b r 1

T
S(f ) ∗ δ[f − n/T ].

• This convolution with unit pulses corresponds to a shift of S(f ) along the abscissa.

Consequently, the sampling of the signal s(t) at intervals Ta corresponds to the periodic repetition of its spectrum S(f ) at intervals fa = 1/Ta .

Example: Sampling of a signal s(t) band limited on some maximum frequency B with sampling frequency fa = 4B:
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Reconstruction

Shannon and Nyquist sampling theorem
A signal s(t) band-limited to |f| ≤ B is fully described by equidistant samples ŝ[n], provided they are no farther apart than Ta ≤ 1/2B. The
sampling frequency, which allows a complete signal reconstruction, is consequently bounded below by fa ≥ 2B.
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• If one chooses fa < 2B, the periodic repetitions of the spectrum overlap

• This effect is known as aliasing

• In that case, a lossless reconstruction is no longer possible.
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Quantization

The samples ŝ[n] ∈ R are still continuous in the range of values and cannot be stored exactly.

Solution: Quantization

• In order to differentiate between M = 2N signal stage, we need code words of N bit

• A specific code word is assigned to each signal stage in the process
• The signal stages are distributed in the quantization interval in a sensible way
• What is “sensible”?

Example: Linear quantization with mathematical rounding

• This scheme is optimal if all values within IQ occur with equal probability

• Step width ∆ =
b − a

M
• Within IQ the maximum quantization error is qmax = ∆/2

• Signal values outside IQ are mapped to the largest or smallest signal stage, respectively ⇒ the quanti-
zation error is unbounded outside of IQ

What if the signal values are not uniformly distributed?

• Linear quantization is typically suboptimal
• Non-linear quantization is used, for example, in the digitization of speech or music
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Quantization

Example: Linear quantization within the interval I = [−0.5; 0.5] mit N = 3 bit:
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Time t – quantized signal s(t) (blue)

s(t)
s(t)
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Time t – quantization error qe (t) = s(t) − s(t)

qe (t) ≤ qmax
qe (t) > qmax

Code word 000 001 010 011 100 101 110 111

Signal stage −7/16 −5/16 −3/16 −1/16 1/16 3/16 5/16 7/16

Question: Why is the highest signal stage at 7/16 and not at 1/2 ?

Remarks:

• The assignment of code words to signal levels is in principle arbitrary

• However, one often chooses a code which reduces the effect of single bit errors
(e. g. Gray code: Adjacent codewords differ only in one binary digit each, i. e., the Hamming distance is 1).
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Signal types (overview)
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Transmission channel

From the last subchapter we should know:

• What are the differences between analog, discrete-time, discrete-value and digital signals?

• How must a signal be sampled so that no information is lost?

• Under what conditions can a naturally occurring signal be reconstructed from sampled and quantized values without loss?

• How should the samples be quantized if within the quantization interval each signal level is equally likely?

In this subchapter we clarify the following questions:

• What influence does the transmission channel have on a signal?

• What is the theoretically maximum achievable transmission rate?
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Channel effects

Model of a (linear, time-invariant) channel with one input and one output:

X Y

η

Channel

Our model considers:

• Attenuation (Signal amplitude of the useful signal at the output is lower than at the input)

• Low pass filter (higher frequencies are attenuated more than low ones)

• Delay (the transfer takes some time)

• Noise in shape of additive white Gaussian noise (AWGN)1

Among others, we do not consider the following effects:

• Interference by other transmissions

• Reflections of our own signal

• Distortions due to non linear filtering effects, among others in dependency of the signal amplitude

• Time variant effects, e. g. objects or people may have an influence on wireless transmissions

1 AWGN is a simplifying model conception of noise processes. In reality, there is no AWGN.
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Channel effects

Example:
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Figure 4: Idealized transmitted signal
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Figure 4: Transmit signal after attenuation and low-pass influences by the channel
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Figure 4: Transmit signal after attenuation and low-pass influences through the channel as well as with AWGN
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Channel capacity

We have already seen that
• a channel has similar effects like a low pass filter and

• additional noise distorts the transmission.

Because of the low-pass characteristic of channels, one can speak of a channel bandwidth B:
• Low frequencies pass unhindered (low pass)

• High frequencies are attenuated

• Above a certain frequency, the attenuation is so strong that the relevant signal components can be neglected

Simplified we assume a sharp upper bound for B:
• Frequencies |f| < B pass

• Frequencies |f| ≥ B are filtered

What is the achievable data rate on a channel with bandwidth B?
For this we need a connection between

• the channel bandwidth B,

• the number M of distinguishable signal stages, and

• the relation between the power of the useful signal and the noise.
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Channel capacity
Noise-free, binary channel

We remember the sampling theorem:

A signal bandlimited to B must be sampled at least at the frequency 2B in order to reconstruct the signal without loss, i.e. so that no
information is lost.

Viewed the other way around:

• We obtain up to 2B distinguishable2 symbols from a signal limited to bandwidth B.

• If you scan more frequently, you do not gain any new information.

• This leads to a new interpretation of the frequency f = 2B, which is also called Nyquist rate.

Definition: Nyquist rate
Let B be the cutoff frequency of a bandlimited channel. Then the Nyquist rate fN = 2B is

• a lower bound for the sampling frequency that allows a complete reconstruction of the signal and

• an upper bound for the number of symbols per time interval that are distinguishable after transmission.

2 Sufficiently sensitive measuring systems provided
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Channel capacity
Noise-free, M-ary channel

Assuming that not only two but M = 2N distinguishable symbols can be transferred. How does the achievable data rate change?

We remember quantization and entropy:

• With a word width of N bit, M = 2N discrete signal stages can be represented.

• If a source emits all characters (symbols) with the same probability, the entropy (and thus the average information) of the source is
maximal.

Consequently, for the transmission rate over a channel of bandwidth B, we obtain the maximum rate 2B log2(M) bit.

Hartleys theoreom
On a channel of bandwidth B with M distinguishable signal stages, the channel capacity bounded above by

CH = 2B log2(M) bit.

Interesting: If we could distinguish any number of signal stages from each other, the achievable data rate would be unlimited! Where is the
problem?
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Channel capacity

Noise

• Noise makes it hard to tell signal levels apart

• The finer the signal levels are selected, the more difficult this becomes
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Measure of the strength of the noise
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Noise power

=
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PN

The Signal to Noise Ratio (SNR) is given as dB: SNR dB = 10 · log10(SNR)

Example: PS = 1 mW, PN = 0,5 mW

SNR = 10 · log10

(
1

0,5

)
dB ≈ 3,0 dB
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Channel capacity

Theorem of Shannon and Hartley
On a channel of bandwidth B with additive white noise with noise power PN and signal power PS , the upper bound for the achievable data
rate is

CS = B log2

(
1 +

PS

PN

)
bit.

Derivation of the theorem: see Shannon’s 1949 publication Communication in the Presence of Noise [1].

Comparison with Hartley’s law:

CH = 2B log2(M) = 2B log2

(
b − a

∆

)
bit.

• The interval limits a,b here refer to the unquantized signal

• With α = a + ∆/2 and β = b − ∆/2 as minimum and maximum quantized signal amplitude, respectively, we obtain

CH = 2B log2

(
β − α + ∆

∆

)
= B log2

((
1 +

β − α

∆

)2)
= B log2

(
1 +

(β − α)2

∆2
+ 2

β − α

∆

)
. (1)

Just as with CS , we get a logarithm of 1 + SNR, where this time the SNR is a quantization noise:

• CS considers only additive noise of the channel but no quantization erros.

• CH considers only signal stages and thus noise due to quantization but no channel effects.

• The missing mixed term in (1) compared to CS is related to the assumption of independence between signal and noise (E[xη] = E[x]E[η]). The quantization
error is of course not independent of the input signal – for this reason (1) cannot be put into the same form as CS without approximation.
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Channel capacity
Summary

The channel capacity C is limited by two factors:

• The number M of distinguishable symbols
Even a noise-free channel is of no use if we can only use two symbols.

• Signal-to-Noise Ratio (SNR)
If the signal-to-noise ratio SNR is too low, the distance ∆ between the signal stages may have to be increased and thus the number of
distinguishable symbols reduced to ensure reliable discrimination.

The channel capacity C is thus limited by the following upper bound:

C < min{CH ,CS } = min {2B log2(M), B log2 (1 + SNR)} bit.

Remarks:

• This is just a model – with highly simplifying assumptions.
• How to construct a channel code with just the right amount of redundancy so that C is maximized is an open problem in information theory. (← challenge!)
• We are talking here about data rates in the information-theoretical sense, i. e., the data to be transmitted is available without redundancy. This is never

guaranteed in real systems
• Payloads are not necessarily (and never optimally) compressed before transmission
• In addition to the payloads, control information (headers) is required (→ more on that later).

⇒ The net data rate that can actually be achieved is below the information-theoretic barrier.
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Message transmission

Digital data Codewords Channel words Baseband impulses

Source
coding

Channel
coding

Line
coding Modulation

DemodulationDetection
Channel
decoding
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C
hannel

Layer 6/1 Layer 1
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Source coding [4]
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Source coding [4]

Source coding
The goal of source coding is to remove (unstructured) redundancy from the data to be transmitted by mapping bit sequences to code
words. This corresponds to lossless data compression.

Source encoding can occur in different layers of the ISO/OSI model:

• Data compression can take place on the presentation layer (layer 6)
• Data may already be in compressed form (lossless compressed file formats, e. g. ZIP, PNG).
• In mobile communications (digital voice transmission), the source coding may happen even at layer 1.
• In local area networks such as Ethernet and WLAN there is commonly no explicit source coding

Examples:

• Huffman code
• Lempel-Ziv / Lempel-Ziv-Welch (LZW)
• Run-Length Enconding (RLE)

→ In Chapter 5 we will go into the Huffman code, which is also covered by the lecture Theory of Computation and Information Theory.
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Channel coding [4]

Digital data Codewords Channel words Baseband impulses

Source
coding

Channel
coding

Line
coding Modulation

DemodulationDetection
Channel
decoding

Source
decoding

C
hannel

Layer 6/1 Layer 1

Chapter 1: Physical layer — Message transmission 1-38



Channel coding [4]

No feasible transmission channel is perfect. One measure of this is the bit error probability pe :

• Characteristic for Ethernet over copper cable: pe ≈ 10−8

• Characteristic for WLAN: pe ≈ 10−6 or more

• Characteristic for unsecured long range radio transmission: pe ≈ 10−4 or more

Mind game:

• Assume an unsecured radio transmission with bit error probability pe = 10−4, and let bit errors be independently and uniformly
distributed

• Assume a packet length of L = 1500 B = 12 000 bit

• Pr [„no bit error in the packet“] = (1 − 10−4)12000 ≈ 30 %

⇒ 70 % of the transmitted packets would contain at least one bit error.

Channel coding
The aim of channel coding is to add structured redundancy to the data to be transmitted so that the largest possible number of bit errors
can be detected and corrected.3

3 Note that error detection and error correction are different goals. Not every error that is detected can also be corrected.
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Channel coding [4]

No feasible transmission channel is perfect. One measure of this is the bit error probability pe :

• Characteristic for Ethernet over copper cable: pe ≈ 10−8

• Characteristic for WLAN: pe ≈ 10−6 or more

• Characteristic for unsecured long range radio transmission: pe ≈ 10−4 or more

Mind game:

• Assume an unsecured radio transmission with bit error probability pe = 10−4, and let bit errors be independently and uniformly
distributed

• Assume a packet length of L = 1500 B = 12 000 bit

• Pr [„no bit error in the packet“] = (1 − 10−4)12000 ≈ 30 %

⇒ 70 % of the transmitted packets would contain at least one bit error.

Channel coding
The aim of channel coding is to add structured redundancy to the data to be transmitted so that the largest possible number of bit errors
can be detected and corrected.3

3 Note that error detection and error correction are different goals. Not every error that is detected can also be corrected.
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Channel coding [4]

Example: Uncompressed image (bitmap) transmitted over an imperfect channel

without channel coding with channel coding
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Channel coding [4]

Minor transmission errors are tolerable in analog systems:

• Noise or crackling on a telephone connection

• Snow (noise) in analog TV

• FM radio

In digital systems, transmission errors can have serious consequences:

• Transmission of compressed or encrypted data (possible error propagation during decoding)

• Error-free transmission may be required, e. g. a downloaded application may be unusable even with single bit error

Additional protocols and mechanisms are therefore needed

• to at least detect transmission errors that occur despite channel coding and

• to repeat a transmission if necessary.

⇒ Interaction of checksums and acknowledgment procedures, typically at the layers 2, 4, and 7.
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Channel coding [4]

Block codes divide a data stream

• in blocks of length k and

• map these blocks to code words of length n > k while

• adding n − k bit for error detection and correction.

Cx x ′
k n

The ratio R =
k

n
is called code rate.

Example: Repetition code

• k = 1, n = 3, mapping: 0 7→ 000, 1 7→ 111
• Decoding fails if 2 bit or more per block are flipped:

Pr [„decoding failure“] =
(3

2

)
p2

e (1− pe ) +
(3

3

)
p3

e ≈
∣∣

pe =10−4
3 · 10−8

• New problem:
• The number of bits to be sent is tripled

• In the error-free case, the achievable data rate would thus decrease to 1/3

⇒ Cost / benefit ratio between error probability and redundancy depends on the current bit error rate
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Line coding
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Line coding

Definition – Line codes
Line codes (not to be confused with channel codes) define the sequence of a certain kind of basic pulses representing bits or groups of
bits. Such a sequence of basic impulses is called transmitting impulse.

In the context of line codes, we understand a symbol to be a physically. measurable change in the time signal.

Important properties of line codes:

• Number of signal levels (binary, ternary, . . . )

• Number of bits encoded per symbol

• Symbol rate (called Baud rate), unit bd

Optional properties of line codes:

• Clock recovery

• DC freedom

• Additional control characters (e. g. 4B5B code → more on that later)

Depending on the type of basic pulses used and their sequence, line codes have an influence on the required channel bandwidth. As a rule
of thumb: the more abrupt signal changes there are, the wider the spectrum required. (see examples)
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Line coding
Basic impulses: rectangular impulse
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b r G(f )1 =

1√
2π

sin(πf )

πf

Advantages

• Most simple representation of data in the time domain

• Basis for various transmitting impulses (→ more on that later)

Disadvantages

• Abrupt signal changes practically difficult to implement at high
frequencies

• Slowly decaying spectrum ⇒ high frequency components

1 The spectrum G(f ) is determined using the Fourier transformation: G(f ) =
∫ ∞

−∞
g(t) (cos(2πft) − j sin(2πft)) dt where j denotes the imaginary unit.
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Line coding
Basic impulses: cos2 impulse
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Advantages

• Fast decaying spectrum since few high frequency components

• Therefore lower influence of low passes

Disadvantages

• The maximum signal amplitude g(t) = 1 is reached only in the
middle of the impulse

• This makes sampling more difficult if the transmitter and re-
ceiver are not synchronized
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Line coding
Line codes: Non-Return-To-Zero (NRZ)

0 1 2 3 4 5 6 7 8 9 10

−1
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1 1 0 1 0 0 0 1
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s(
t)

Coding rule:

• Transmit pulse g(t) = rect (t) with period T

• Possible assignment of weights dn =

{
1 bn = 1

−1 bn = 0

• Transmitted signal is defined as s(t) =
∞∑
n=0

dng(t − nT )

Properties:

• Binary code (only two signal levels)

• Efficiency 1 Symbol/bit

• No clock recovery (long sequences of same bit)

• Not free of DC

• Slowly decaying frequency components
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Line coding
Line codes: Return-To-Zero (RZ)
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Kodiervorschrift:

• Transmit pulse g(t) = rect
(

2t + T
2

)
with period T

• Possible assignment of weights dn =

{
1 bn = 1

−1 bn = 0

• Transmitted signal is defined as s(t) =
∞∑
n=1

dng(t − nT )

Properties:

• Binary code (only two signal levels)

• Efficiency 2 Symbols/bit

• Clock recovery through forced level changes simple

• Not free of DC

• Slower decay of high frequency components than NRZ
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Line coding
Line code: Manchester-Code
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Coding rule:

• Transmit pulse g(t) = rect
(

2t + T
2

)
− rect

(
2t − T

2

)
with pe-

riod T

• Possible assignment of weights dn =

{
1 bn = 1

−1 bn = 1

• Transmitted signal is defined as s(t) =
∞∑
n=1

dn · g(t − nT )

Properties:

• Binary code (only two signal levels)

• Efficiency 2 Symbols/bit

• Clock recovery through forced level changes simple

• DC free since each transmit pulse is already DC free

• Even slower decay of high frequency parts than RZ

Chapter 1: Physical layer — Message transmission 1-49



Line coding
Line code: Multi-Level-Transmit 3 (MLT3)
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Coding rule:

• Transmit pulse g(t) = rect(t) (rectangular pulse) with period T

• Weights dn = sin

(
π

2

n∑
k=1

bk

)

(→ dependent on the number of previously occured 1-bits)

• Transmit signal defined as s(t) =
∞∑
n=1

dng(t − nT )

Properties:

• Ternary code (three signal levels)

• Efficiency 1 bit/Symbol

• No clock recovery (long sequences of same 0-bit leads to no
change of the signal level)

• Not DC free

• Fast decay of high frequency components since the funda-
mental period is reduced by the periodic signal waveform
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Line coding

Open questions: How can a receiver detect if

• symbols represent data at all (medium could be “idle”) and
• how can the beginning or end of a message be detected?

Option 1: Violation of coding rule

• If the medium is idle, invalid baseband pulses can be transmitted
• A fixed number of alternating bits can be sent before the start of a message (preamble)
• Start of the message is indicated by a second sequence (Start Frame Delimiter (SFD)).
• This works with NRZ, RZ and Manchester Code (e. g. zero level), but not with MLT3 (zero level here means a sequence of 0-bits).

Example: Manchester-Code with preamble

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
−1

0

1

idle preamble SFD data idle

Time t in multiples of T

s(
t)

• Preamble allows for clock synchronization
• Start Frame Delimiter (SFD) at the end of the preamble signals the beginning of the message
• Coding rule violation (zero signal level) indicates and idle medium
• Used by IEEE 802.3a/i (10 Mbit/s Ethernet over coaxial and twisted pair cables→ more on that later)
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Line coding

Option 2: Control characters

• Define a block code that divides channel words into groups of k bit and maps to n > k bit.

• This block code is not for error correction (task of channel coding), but only for providing control characters.

• The mapping can be selected in such a way that, when transmitting valid channel words,
• clock recovery and
• DC freeomd

become possible even with line codes such ase NRZ, RZ, and MLT3.

• Invalid code words that are neither data words nor control characters can be used for error detection

Example 1: 4B5B code

• k = 4 bit channel words are mapped to n = 5 bit code words
• The assignment between channel words and code words is chosen so that at least one signal change occurs in each block of 5 bit (clock recovery for NRZ

and MLT3).
• The additional code words are used as control characters (start/stop, idle, . . . )
• Used in combination with MLT3 by IEEE 802.3u (100 Mbit/s FastEthernet over twisted pair cables)

Beispiel 2: 8B10B code

• k = 8 bit channel words are mapped to n = 10 bit code words
• Assignment similar to 4B5B, but here DC freedom ican also be guaranteed over time
• Used by PCIe, Serial-ATA, USB . . .
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Modulation [6]
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Modulation [6]

So far we have considered only baseband signals:

• Time-shifted transmission pulses are weighted.

• Temporally limited transmission pulses (we have got to know only such) possess an infinitely extended spectrum.

• Provided that the transmission channel is exclusively available for baseband transmission, this is not a problem at first.

What if the channel is used by several transmissions simultaneously

• The baseband signal (or its basic pulses) is lowpass filtered, which corresponds to a limitation of the spectrum (and thus a slight
distortion of the time signal).

• Subsequently, the filtered baseband signal can be modulated to a carrier signal.

• This corresponds to a shift of the spectrum (multiplication in the time domain corresponds to a shift in the frequency domain).

• If several transmissions share one channel in this way, we speak of Frequency Division Multiplex (FDM).
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Modulation [6]
Principle sequence of digital modulation processes

• The transmit pulses g(t) are limited to a maximum frequency fmax by means of low-pass filtering. We refer to the pulses filtered in this
way as gT (t).

• The also band-limited transmit signal sT (t) is modulated on a carrier signal of frequency f0:

s(t) = sT (t) · cos(2πf0t) =

(
∞∑
n=1

dn · gT (t − nT )

)
cos(2πf0t).

Schematic sequence in the frequency domain:

f
0

|ST (f )| bzw. |S(f )|

−fmax fmax f0 f0 + fmaxf0 − fmax

Spectrum of the transmit signal sT (t) in the baseband Spectrum of the bandpass signal after modulation s(t)

Modulation
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Modulation [6]

4-ASK (Amplitude Shift Keying)

• A distinction is made between 4 signal levels ⇒ 2 bit/Symbol
• Only the amplitude of the carrier signal is modulated

Example: Possible weights S =
{
− 3

2 ,− 1
2 , 1

2 , 3
2

}

• Two bits of the data stream are mapped to a symbol d ∈ S each, e. g. 00 7→ − 3
2 , 01 7→ − 1

2 , . . .

• The symbol sequence dn changes the amplitude of a basic pulse (e. g. a low pass filtered square pulse)

• The resulting baseband signal is multiplied by a carrier signal (modulation)
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(a) Constellation diagram
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(b) Transmit signal s(t) (blue), baseband signal sT (t) (red).
Simplification: sT was not low-pass filtered here!
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Modulation [6]

Quadrature-Amplitude-Modulation (QAM)

• You can mix cosine and sinusoidal carrier signals

• Separation possible by orthogonality of sine and cosine

• The cosine is called inphase part, the sine is called quadrature part

• The data rate can be doubled in this way

s(t) =

(
∞∑
n=1

dIn · gT (t − nT )

)
cos(2πf0t) −

(
∞∑
n=1

dQn · gT (t − nT )

)
sin(2πf0t)

I

Q

0000 0001 0101 0100

0010 0011 0111 0110

1010 1011 1111 1110

1000 1001 1101 1100

(c) 16-QAM

I

Q

(d) 32-QAM
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Modulation [6]

• QAM simply doubles the data rate?

• Have we disproved Shannon?

Of course not: [7] Due to the frequency shift, the bandpass signal occupies double the bandwidth compared to the baseband signal. This
shifts the negative frequency components from the baseband into the positive range, forming an

• upper side band, which represents the non-negative frequency components, and a

• lower side band, which represents the non-positive frequency components of the baseband signal.

f
0

|ST (f )| bzw. |S(f )|

−fmax fmax f0 f0 + fmaxf0 − fmax

Spectrum of the transmit signal sT (t) in the baseband Spectrum of the bandpass signal after modulation s(t)

Modulation

• Modulation thus doubled the required bandwidth.

• This “lost degree of freedom” can be compensated again by mixing sine and cosine carriers.

The upper bound for the achievable data rate is therefore still valid.
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Modulation [6]
Summary

What we should know:

• What are the differences and goals between source coding, channel coding and line coding?

• How do simple block codes work, e. g. repetition code?

• Why are additional procedures needed for error detection despite all coding procedures?

• How do the line codes introduced in this chapter work?

• What are the respective advantages and disadvantages of the line codes introduced here?

• How could these line codes be extended to more than two or three signal levels?

• What is the principle of modulation?

• How does frequency division multiplex

• How are signal space allocation, modulation method and the achievable data rate related?

• How does Phase Shift Keying (PSK) work and what is a valid signal space mapping for PSK?
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Transmission media

We differentiate between

• wireline and

• wireless transmissions

as well as between

• accustic and

• electromagnetic waves.

In the field of digital data transmission, electromagnetic waves are predominantly used. Few exceptions here are

• tone dialing (e. g. „dial-up“ used by internet connections in POTS4) and

• submarine wireless communication.

In the following, we provide an overview of

• what EM waves actually are,

• frequencies in the EM spectrum, and

• which types of transmission media are frequently used in wireline networks.

4 Plain old telephone system
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Electromagnetic waves

Electromagnetic waves consist of an electric (E⃗) and magnetic (B⃗) component, each orthogonal to the other and to the direction of propaga-
tion:

x

B⃗

E⃗

Direction of propagation

Wave length λ

Important properties:

• Propagation in vacuum with speed of light c0 ≈ 3 · 108 m/s

• Unlike sound waves, no medium is required for propagation

• Within a medium (conductor, air), the propagation velocity is c = νc0, where ν < 1 is called relative propagation velocity, e. g. ν ≈ 0.7
in optical fibers or ν ≈ 2/3 in coaxial conductors.

• The wave length λ describes the spatial extension of a wave period in the medium

• The frequency f results from the speed of light and the wave length in the medium to f = c/λ = c0/λ0

• At the transition from vacuum into a medium the frequency f remains constant, wave length and propagation velocity change propor-
tionally to each other
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Electromagnetic waves
Spectrum of electromagnetic waves

The figure below shows a schematic representation of the EM spectrum:
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The following are predominantly used for digital data transmission:

• the frequency band between MHz and ∼60 GHz (WLAN / IEEE 802.11 ad),
• the optical spectrum up to λ ≈ 1 nm, and
• frequencies in the baseband up to a couple of GHz.
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Coaxial conductors

• Among others, used for IEEE 802.3a („10Base2 Ethernet“, 10 Mbit/s)
• Forms a common bus to which all participants are connected
• Only one participant can send at any time

• Other areas of application:
• TV cable network
• High frequency technology (connection to antennas in wireless networks)
• Twinax cables for 40 und 100 Gbit Ethernet over short distances (∼ 7 m)

Coating

Screen

Isolator (cladding)

Inner conductor

(a) Schematic structure [5]

50 Ω terminating resistor

Tee connector Coaxial conductor

Clients

(b) 10Base2 Bus (IEEE 802.3a)
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Twisted-Pair-Kabel

Structure

• 2 or 4 wire pairs consisting of copper strands

• Each wire pair is twisted (thus the name twisted pair)

• Second wire of a pair carries inverse signal level (differential coding)

• Twisting and inverse signal levels reduce crosstalk

• RJ-45 or smaller RJ-11 connectors

Usage

• Local networks (most Ethernet standards for client connections) with RJ-45 connector

• Telephone connection (analog and ISDN) with RJ-11 connector

Coating

Screen

Insulator
Copper conductor

Wire pair

(a) Cable cross section

Pins 1 – 8

(b) Stecker
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Twisted-Pair-Kabel

Dependent on the type of shielding and screening we differentiate between

• UTP (unshielded twisted pair)

• STP (shielded twisted pair)

• S/UTP (screened / unshielded twisted pair)

• S/STP (screened / shielded twisted pair)

(c) UTP [3] (d) Screened UTP [2]

Shielding and screening influences the

• signal quality (e. g. crosstalk between wire pairs) and

• flexibility of the cable (well shielded cables are thicker and stiffer).
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Twisted-Pair-Kabel

Connecting multiple computers via hub (or switch) using straight-through cable at 100BASE-TX
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(a) Straight-through (b) Hub creates a physical bus, half-duplex

• Direct connection of two computers via cross-over cable
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Twisted-Pair-Kabel
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Optical fibers

• Light is transmitted within the fiber core

• Core and cladding each have different optical densities → Refractive index ensures approximate total internal reflection

• Single-mode fibers avoid scattering due to very small core diameter → low losses, but very sensitive (cable break)

• Multi-mode fibers have a larger core diameter and therefore tend to scatter → higher losses, but less sensitive

Coating
Cladding

Core

(a) Cable cross section (b) LC connector

Core Reflection at the boundary layer to the core

(c) Side view of a fiber

Advantages over electrical conductors:

• Very high data rates possible

• Long range connections

• No crosstalk

• Galvanic decoupling of transmitter and receiver
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Summary
Transmission media

• For digital communication one uses electromagnetic waves
• in the frequency range up to a couple of GHz and
• in the optical spectrum.

• As medium one uses either
• electrical conductors (copper) or
• optical fibers.

• radio transmissions do not require a medium, since electromagnetic waves (unlike sound waves) propagate in vacuum

• The medium used has an influence on the speed of propagation.

In the next chapter find answers to the questions

• how nodes can access a shared medium (medium access control) and

• messages can be sent to a specific neighboring node (addressing in local networks).
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Summary

We should know,

• what the information content of characters as well as the entropy of a message source mean,

• what effects fast level changes in the time domain have on the frequency domain,

• how signals can be sampled, quantized and reconstructed,

• how to determine the maximum achievable data rate depending on bandwidth, SNR and number of distinguishable symbols,

• what is the difference between channel and source coding,

• how line codes such as RZ, NRZ, Manchester, and MLT-3 work,

• what is the difference between baseband transmissions and modulated signals,

• which frequency ranges are used for digital transmission, and

• what fundamentally different types of transmission media are used.
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