

EexamPlace student sticker here

Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

Computer Networking and IT Security

Exam: Examiner:			l0012 / Retal DrIng. Step		Date: Time:	-	6 th April, 2023 6:00
	Р	1	P 2	P 3	P 4	P 5	P 6
I							
II							

Before we proceed with reading the processing instructions, please answer the following questions. This information helps us to examine learning success depending on participation in individual lecture components. The information is **voluntary** and **not considered for evaluation**, i. e., answers to these questions do not give credits. In order to exclude any influence, this page will not be made accessible during the correction.

a) Did you attend the lecture?		
1 (regularly)	2 (sometimes)	3 (never)
b) Did you attend the tutorials?		
1 (regularly)	2 (sometimes)	3 (never)

Working instructions

- This exam consists of **16 pages** with a total of **6 problems** and the cheatsheet ditributed with the exam. Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 90 credits.
- · Detaching pages from the exam is prohibited.
- · Allowed resources:
 - one non-programmable pocket calculator
 - one analog dictionary English ↔ native language
- Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- · Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from	to	/	Early submission at
	to	,	Larry Submission at

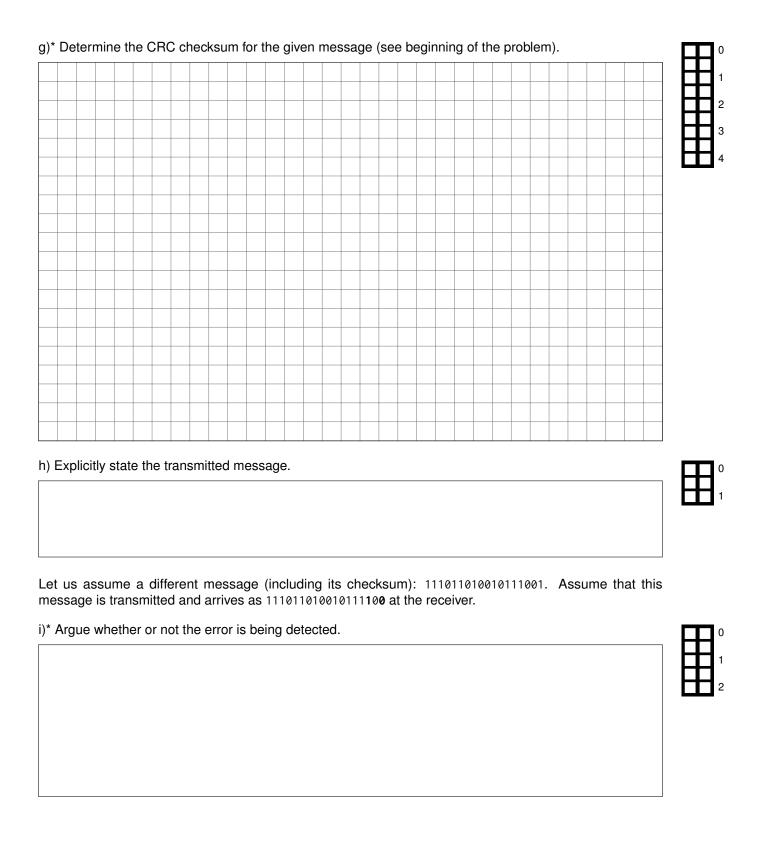
Problem 1 Multiple Choice (14 credits)

The following subproblems are multiple chouce/multiple answer, i. e., at least one answer per subproblem is correct. Sub problems with a single correct answer are graded with 1 credit if correct. Those with more than one correct answers are graded with 0.5 credit per correct answer and -0.5 credit per wrong answer. Missing crosses have no influence. The minimal amount of credits per subproblem is 0 credits.

				rk corre												X					
				undo a re-mark				-					•		X						
a)* H		ny broad		domains	·			ork/			ght co						_	- X	<u></u>	-	
h)* H	ow ma	ıny collis	ion do	maine (dae t	he ne	two	rk to	the	riah	t con	tain?	>					ni,	, a		
_	4	· _	2	_	3]	1	ik te	, tile	_	6	tair:		5			-	-(X	<u></u>	-	
c)* M	ark the	e adjace	ncy ma	atrix for	the n	etwor	k to	the	righ	ıt.										(1)	
	\[\begin{pmatrix} 1 & - \\ 1 & \\ 0 & \\ 0 & \\ 0 & \\ 0 & \\ \end{pmatrix} \]	-1 0 0 -1 1 -1 0 1 0 0	0 0 0 -1 1	0 0 0 0 0 -1		1 1 1 0 0 1 0 0	0 1 1 1 0	0 0 0 1 1	0 0 0 0 0 1				0 1 1 0 0	1 0 1 0 0	1 1 0 1 0	0 0 1 0	0 0 0 1 0			1	1
	iven th D ⁿ⁺¹ h	ne distan olds?	ce ma	ıtrix D f	or the	netw	ork	to th	ne ri	ght. '	What	is th	ne m	inin	num	า <i>ท</i>	such	that	\prec	1	
	n = 1			□ n =	4				n	= 3					n =	6		($\stackrel{\scriptscriptstyle 4}{\smile}$	1	
	n = 7			n =	0				n	= 2					n =	: 5				5	
		that Bo the right				each	othe	ers p	ubli	ic key	y. Wł	nat is	s the)	Ali	ice c=e	nc(m	, pub	_bob)		Bob ►
	Eve ca	an imper	sonate	e Bob							lle an		reby	,						iv_bob _alice	
	No for	rward-se	crecy								crypt					_		С	:		
						Ц	кер	olay	Atta	icks					Ţ	n=d	ec(m	, pri	v_ali	.ce)	\
f)* W	hich th	ree of th	ne follo	wing cl	laims a	are tr	ue?														
	In AE ones	S-CBC,	later t	olocks i	influer	nce p	revi	ous			Comi 4096		key	lenç	gths	for	AES	S are	2048	3 bit ar	nd
	ECC i	s robust	agains	st quan	tum c	ompu	ters						is v	ulne	erab	le t	o ler	ngth-e	exter	sion a	at-
	RSA i	s robust	agains	st quan	tum co	ompu	ters				tacks Ciphe		kt blo	ocks	in .	AES	S-EC	Вса	n be	cut ar	nd
	AES is	s robust	agains	st quant	tum co	ompu	ters			_	paste										
											SHA-	3 is v	vulne	erab	le to	o lei	ngth-	exter	nsion	attacl	ks

g)* What is the AES-CTR scheme?	
A hash function A block cipher	☐ A stream cipher ☐ A key exchange
h)* A chain of trust is used in Trusted fourth parties Trusted computing	☐ Trusted Memory☐ Your trusted bike lock
 i)* The domain name system has a mapping from every single IP address to a domain name translates domain names to IP addresses 	☐ is inherently trustworthy☐ has a single, central authority
 j)* The congestion avoidance phase of TCP Reno increases the traffic control window linearly is the first phase active in a new connection 	 increases the traffic control window exponentially follows the rapid start phase
 k)* In 802.11 management frames are unprotected when using WEP traffic cannot be sniffed by attacker when not in line of sight 	 only two layer 2 addresses are contained in the header arbitrary errors are corrected using the FCS (Frame Correction Sum)

Problem 2 Short Questions: Security (14 credits)


0	a)* Differentiate Authentication from Authorization.									
¹ ⊞										
2										
0	b) Argue whether an man-in-the-middle attacker can be passive and/or active. Describe a scenario for each applicable property.									
ш										
2										
0	c) How is a password hash function different from SHA-256?									
1										
0	d)* Name and describe the three properties of a cryptographic hash function.									
ш	Су также акке выселие в не в регрение се в сургоднарние население.									
¹ Ш										
2										
3										

e) Briefly describe a scenario in which the IPsec tunnel mode is used.	0
f) Differentiate a block cipher from a stream cipher.	
g) Differentiate symmetric encryption from asymmetric encryption. Elaborate on the usage of keys.	0 1 2
h) Describe three functions of a TPM.	0
	2

Problem 3 CRC (14 credits)

In this problem we consider the binary message 00100110 which should be protected by a CRC as we introduced it for Ethernet-based networks in the lecture. We assume the reduction polynomial $r(x) = x^2 + 1$.

0	a)* Briefly explain what CRC is used for in the context of Ethernet.
1	
0	b)* What is the reduction polynomial being used for?
1	
0	c)* What does it mean if the reduction polynomial is <i>irreducible</i> .
1	
0	d)* Reason whether or not CRC requires an irreducible reduction polynomial.
1 🖽	
2	
0	e)* Show whether or not $r(x)$ is irreducible.
ĬШ	
' LLL	
0	f)* Assuming Ethernet, what is the reaction of the receiving node when a bit error is detected.
' LL	

Problem 4 Wireshark (19 credits)

We consider the network topology depicted in Figure 4.1. The PC tries to establish an SSH connection via IPv4 to the server SRV. The MAC and IP addresses of the devices' interfaces are given.

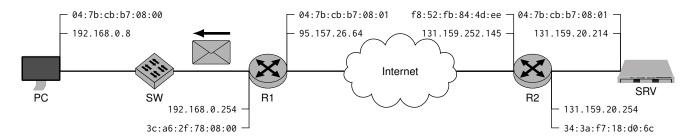


Figure 4.1: Network topology

We consider the frame sent from R1 to the PC as depicted in Figure 4.1, which is the first message from SRV **after** the TCP handshake has completed.

In the following we want to derive the **hexdump of that frame** based on the information given in Figure 4.1 and the following subproblems. Fill in the contents step by step in Figure 4.2. **Make sure to mark to which subproblem your solution belongs**, e.g. by using colors or writing the respective subproblem above your solution. As an example, the L2 receiver address is already filled as answer to some (not existing) Subproblem x).

Notes: There may be some gaps in the final hexdump as we do not derive all contents of that frame. The cheatsheet handed out together with this exam contains any headers and translations you need.

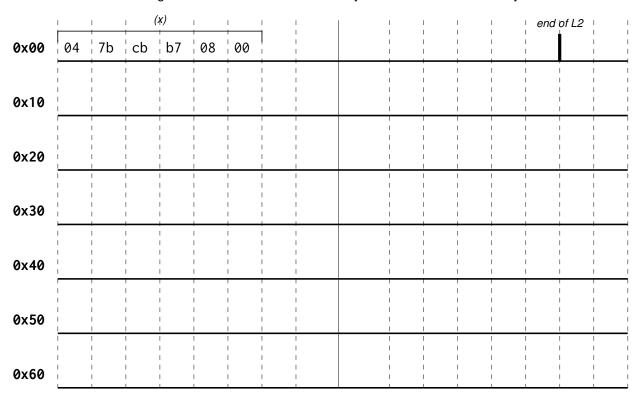


Figure 4.2: Preprint for the frame's hexdump

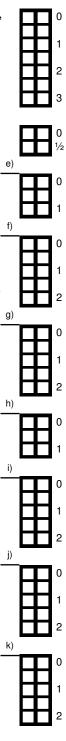
a)* Fill in the transmitter address of layer 2 in Figure 4.2.

b)* Fill in the value of the field specifying the type of the L3 PDU in Figure 4.2.

Before we continue to fill out the hexdump, we want to mark the end of different headers. Assume that

- the L3 header does not use any options,
- the L4 header uses 12 B options, and
- the total frame length (including checksum) is 111 B.
- c)* Mark **the end** of the **L3** and **L4 headers** as well as of the **frame iteself** in Figure 4.2. As an example, the end of the L2 header is already marked.
- d) Fill in the frame check sequence given as 42 0a f1 73 in Figure 4.2.

We now start with filling in different fields of the L3 header. The start of the L3 header is already given in Figure 4.2. **Do not forget to mark to which subproblem your fill ins belong.**


- e)* Fill in the field specifying type and length of the L3 header.
- f)* Fill in the L3 source address.
- g)* Fill in the L3 destination address.
- h)* Fill in the value of the field specifying the type of the L3 SDU.

We now continue with filling in different fields of the L4 header. In case a value is not defined, make a reasonable assumption. **Do not forget to mark to which subproblem your fill ins belong.**

- i) Fill in the source port.
- j) Fill in the destination port.
- k) Fill in the value of the field specifying that offset in the L4 header.

Finally, we come the application layer of the frame's content which is the ASCII encoded string "SSH-2.0-OpenSSH_9.2p1 Debian-2".

I) Fill in the first 5 B of the L7 PDU.

Problem 5 DNS (13 credits)

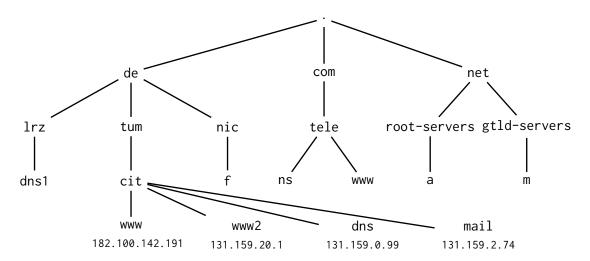


Figure 5.1: A part of the DNS.

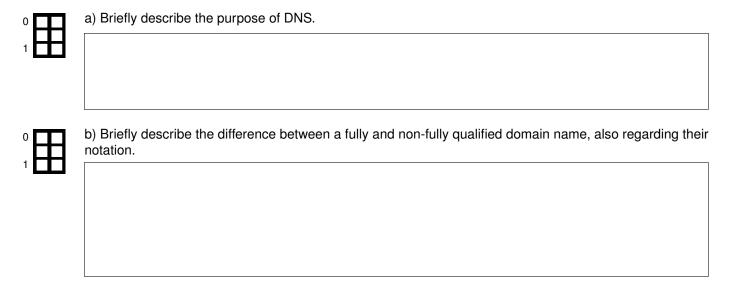
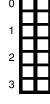



Figure 5.1 shows the zone file of the authoritative name server for cit.tum.de.

```
$ORIGIN cit.tum.de.
2
   $TTL 1H
3
4
   @ IN SOA dns.cit.tum.de. hostmaster.cit.tum.de. (...)
5
6
7
                           ΙN
                                       131.159.2.74
8
                                       131.159.20.1
                           ΙN
9
                           ΙN
                                       131.159.0.99
                                       182.100.142.191
10
                           ΙN
11
                           ΙN
                                       20 mail.cit.tum.de
                                       dns.cit.tum.de
12
                           ΙN
```

Figure 5.2: DNS zone file on nameserver dns.cit.tum.de

c)* Add all other missing data in the zone file depicted in Figure 5.2 based on the information from Figure 5.1.

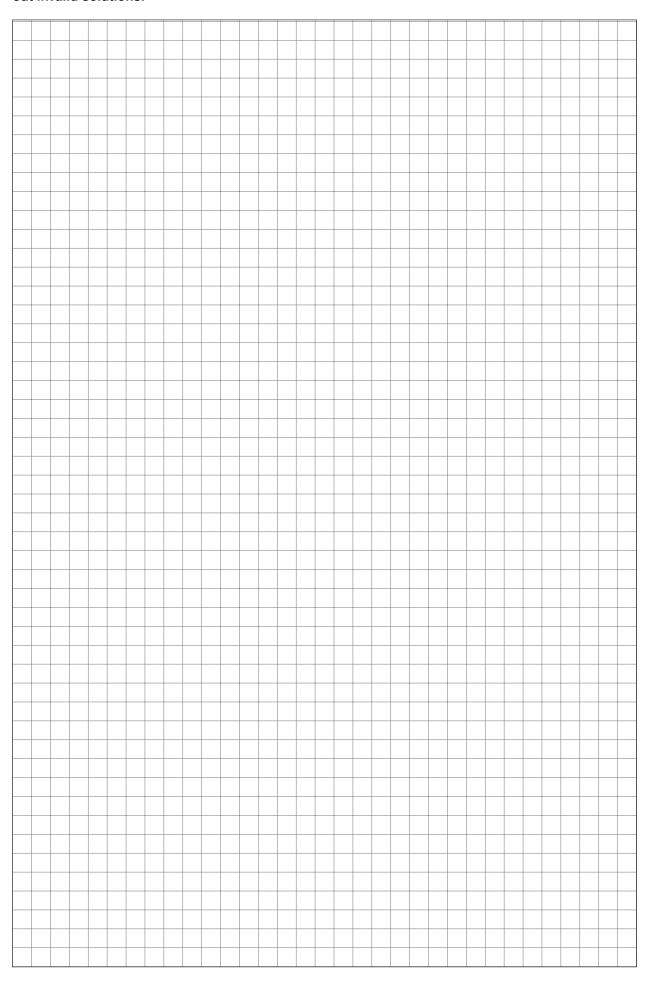
d)* Distinguish a resolver from a nameserver.	
e)* Briefly describe the purpose of a zone's SOA record.	
f)* What does "authoritative" mean in the context of DNS?	
g)* Determine the PTR record of the address 11.42.43.12. You do not need to reason your answer.	
h)* Describe the components of the url https://www.cit.tum.de/webmail?user=user&pwd=pass.	
i) Explain the difference between recursive and iterative name resolution.	
	1 2

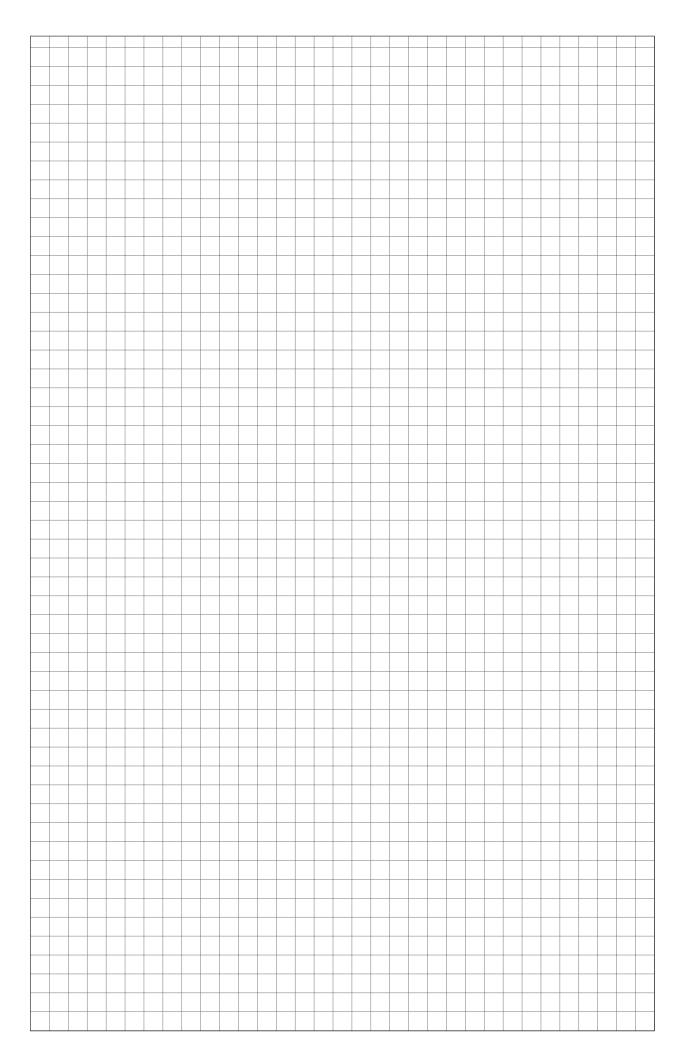
Problem 6 Side-Channel Information Stealing (16 credits)

You have breached the data center of a large cloud hosting provider. You intend to extract their private key of 4096 bit length. The key is derived from perfect, uniform randomness. As a very strict network policy is employed there is no way you will be able to do this via the network.

Therefore, you have come up with another way: The cloud hosting provider streams their data center via a live cam (24 frames per second), seemingly to show off their hardware. This stream includes a view of the hard drive activity LED of the relevant server. You can control the LED — and decide to extract the private key by encoding it through LED blink patterns, which you can decode by viewing the live stream.

a)* What is the maximum data rate achievable on the channel?
To properly detect the LED being on or off, a pulse length of at least 100 ms is needed.
b) What is the resulting transmission rate? How long does it take to transmit the private key?
There is still one problem remaining: you have to properly synchronize the transmission on send receiver side. To achieve this you decide to employ a new <i>8b11b</i> coding scheme. In this scheme, payload are coded to 11 bit of channel word. The coding transforms a byte to a channel word by prep a start sequence, thereby marking the start of each channel word recognizeable. This start sequence bits long, and consists of all ones: 111.
To not confuse frame starts with actual data, all left-most occurrences of 11 in the data are replaced we This process is called bit-stuffing. On the receiving side, this process is reversed, thus replacing 110 You can neglect any padding that would become necessary for all following sub tasks!
c)* Determine the expected length increase of the actual transmitted data. Note, that the bit-stuffing on the payload!


d) Using the expected length increase, determine the expected code rate.	\mathbf{H}
e)* Argue whether it is realistic to calculate the key by brute-force, rather than extracting it via the side-channel.	H
ou decide that your current approach is too inefficient.	
) Propose an approach to reducing the overhead while maintaining the synchronization properties.	
	Ш


If you were unable to solve subproblem c), use 1024 bit as the expected length increase.

coding scheme employed, which shall not be explained in detail, allows for synchronization without the use of special symbols. Bit-stuffing is therefore not longer necessary. g) How long is the resulting data sent? Is this coding on average more efficient than the previous approach? The new coding additionally allows you to detect and correct one flipped bit in each channel word. h) What is the probability Pr[incorrect] that the transmission cannot be decoded correctly? Note: For this sub task, round to four digits of accuracy. You are allowed to calculate using rounded interim results

While testing your approach you realize that there is still a $\frac{1}{200}$ chance left that you read a given bit **incorrectly**. Given this, you decide to add redundancy to your coding, extending the *8b11b* coding to the **8b11b_v2** coding. Again, each 8 bit long word of data is translated to 11 bit of channel word. In contrast to before, the

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

