Esolution

Sticker will be generated

Compliance to the code of conduct

I hereby assure that I solve and submit this exam myself under my own name by only using the allowed tools listed below.

Signature or full name if no pen input available

Computer Networking and IT-Security

Exam:INHN0012 / Quiz 2Examiner:Prof. Dr.-Ing. Stephan Günther

Date: Thursday 18th January, 2024 Time: 14:30 – 14:45

Working instructions

- This exam consists of **4 pages** with a total of **2 problems**. Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 15 credits.
- Detaching pages from the exam is prohibited.
- · Allowed resources:
 - everything except team work and any kind of AI
 - the **cheatsheet** from https://cns.net.in.tum.de
- Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.

Problem 1 Data over tin cans (10 credits)

0

0

0 1

0

0 1 2

0

Given the network shown below, consisting of tin cans 1 and 2, which are connected to each other by a taut cord.

Can 1	10 m	Can 2
Figure 1.1	1: Direct connection of two tin cans with a ter	nsioned cord
Information is encoded in the form	m of the duration of a tone of a certain freque	ency:
• a tone of 200 ms means a s	tart bit	
 a tone of 100 ms means a log 	ogical 1	
 a tone of 75 ms means a log 	gical 0	
 individual tones are separa 	ted by a 75 ms idle period	
The propagation delay of sound b	petween both tin cans as assumed to be 200	10 m/s.
a)* Name the analog to the start	bit for Ethernet. (no reasoning)	
Preamble plus the start frame	delimiter	
b)* Determine the propagation de	elay between both tin cans.	
	$\frac{10 \text{ m}}{2000 \text{ m/s}} = 5 \text{ ms}$	
c)* On which technical aspect do	es the maximum achievable data rate depen	nd?
In and of itself only from the te shorter the tones that can be	emporal resolution of the transmitter and receinsed.	iver.The higher the resolution, the
d)* Derive the average achievable	e data rate in bit/s assuming that a redundar	ncy-free data stream is to be sent.
Start bit may be neglected for $\Rightarrow \frac{1000 \text{ ms}}{175 \text{ ms}/2+75 \text{ ms}} \frac{\text{bit}}{\text{s}} = 6.15 \text{ bit/s}$	longer transmissions.	
The ASCII string "DWT" (without	quots) is being transmitted.	
e)* Determine the binary represe	ntation of that string. Mark start and end of	each codeword.
01000111 01000001 01000100 (ASCII is a 7 bit code. Since th	ne cheatsheet prints 8 bit per code word, both	variants are considered correct.)
f) Derive the serialization time (in	cluding start bit) for the message.	
8 - (1)	$00 \mathrm{ms} + 75 \mathrm{ms}) + 13 \cdot (75 \mathrm{ms} + 75 \mathrm{ms}) + 200 \mathrm{ms}$	s = 3.55 s
With 8 bit code words: 8 · (100	$ms + 75 ms) + 16 \cdot (75 ms + 75 ms) + 200 ms =$	4.00 s

Yes, if both directions use different frequencies (frequency multiplex).

	0
	1
-	2

Problem 2 Short problems (5 credits)

a)* For a path in the internet we have determined an MTU of 1240 B. Derive the most meaningful MSS for TCP connections over IPv4. Assume that neither TPC nor IP options/extensions are being used.

The MSS is the size of the L4 SDU. Thus, the can be determined as

MSS = MTU - IP-Header - TCP-Header

b)* Explain why it is important to choose a MSS for TCP in dependency	of the MTI	J inst	ead of	using an	arbitrary	
value.				r		

The MSS should be choosen such that the packet size is maximized but fragmentation avoided.

c)* Why do we need a connection establishment with TCP in contrast to UDP?

TCP is connection-oriented, i.e., initial squen	e numbers (state) have to be exchanged before data can I	be
transferred.		

d)* The following diagram shoes multiple segments on Layer 4 being sent from *A* to *B*. Two of those segments get lost. Determine the correct acknowledgement numbers (assume forward acknowledgements) sent by *B* when receiving the segments. **Assume that Go-Back-N is being used.**

4	SEQ = 53	B
SEQ = 54	SEQ = 55	ACK = 54
SEQ = 56	SEQ = 54	ACK = 54
	SEQ = 57	ACK = 55
		ACK = 55
ł		ţ

	0
	1
	2

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

