Chair of Distributed Systems and Security School of Computation, Information, and Technology Technical University of Munich

Eexam

Place student sticker here

Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

Computer Networking and IT-Security

Exam:INHN0012 / MidtermExaminer:Prof. Dr.-Ing. Stephan Günther

Date: Thursday 14th December, 2023 **Time:** 12:15 – 13:00

Working instructions

- This exam consists of **8 pages** with a total of **3 problems**. Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 45 credits.
- · Detaching pages from the exam is prohibited.
- · Allowed resources:
 - one non-programmable pocket calculator
 - one analog dictionary English ↔ native language
- · Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- · Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.

Problem 1 Multiple Choice (15 credits)

The following subproblems are multiple choice/multiple answer, i.e. at least one answer per subproblem is correct. Subproblems with a single correct answer are graded with 1 credit if correct. Those with more than one correct answers are graded with 1 credit per correct answer and -1 credit per wrong answer. Missing crosses have no influence. The minimal amount of credits per subproblem is 0 credits.

	Mark correct answ To undo a cross, c To re-mark an opti	ompletely fill o	ut the answer		×	
a)* Which statements	regarding MLT-3 ar	e correct?				
It is a line code		It is a source	code		It is guran	teed to be DC-free
It is a channel co	ode	One symbol e	encodes 3 bit		The spec than Man	ctrum is narrower chester
b)* What is the correc	t shortened form of	2001:000a:00	00:0000:0001	:0002:112	22:0101/64	4?
2001:a::1:2:11	22:101/64					
2001:000a:0000	:0000:0001:0002:1	122:0101/64				
2001:a:0000:1:	2:1122:101/64					
2001:a:0:0:1:2	:1122:0101/64					
c)* How many broadc	ast domains does th	ne network to t	he right conta	in?		
	3	1	6	5		
d)* How many collision	n domains does the	network to the	e right contain	?		
2 5	3	4	6	1		
e)* What subnet can 1	92 168 8 0/23 and	192 168 12 0	1/23 directly b	e anarea:	ated to?	
192.168.8.0/24	1 192.168		192.168.			Cannot be aggregated
f)* How long is an IPv	6 address in octets'	?				
12	20 🔲 16	10	٤ 🗖	3	6	4
g)* What subnet can 1	92.168.8.0/23 and	192.168.12.0	/23 directly b	e aggrega	ated to? (D	Duplicate)
192.168.0.0/16	192.168	.8.0/22	Cannot b aggregat			192.168.8.0/24
h)* Which address typ	e is used to send A	RP requests?				
Unicast	Multicas	t	Broadca	st		Turbocast
i)* Which are IPv4 priv	vate address ranges	\$?				
127.0.0.0/8	169.254	.0.0/16	192.168.	0.0/16		192.168.0.0/8
172.16.0.0/12	0.0.0/8	3	10.0.0/	8	D f	e80::/10

j)* Which feature of	the IPv4 header does a	traceroute direct	ctly rely on?	
Flags	ldentification		Fragment Offset	
k)* CRC in Ethernet	is used for			
error detection	n. 🔲 error prop	agation.	error correction.	error translation.
I)* What is true rega	urding 16-QAM?			
At the same b	audrate it needs more b	andwidth than 2	2-PSK	
It is more robu	ist than 2-PSK			
It uses only th	e phase of the signal to	encode data		
\square It is short for (Quart-Archimedes Modu	ulation		

Problem 2 Waternet (15 credits)

Figure 2.1 shows a hypothetical network that uses pipes filled with water as a transmission medium instead of copper cables. The distribution unit *V* essentially consists only of a sphere filled with water without any further logic. To simplify matters, we assume that reflections do not play a role. The distance between PC1 or PC3 and *V* is 20 m and 10 m, respectively. The distance between *V* and PC2 is so small that it can be neglected.

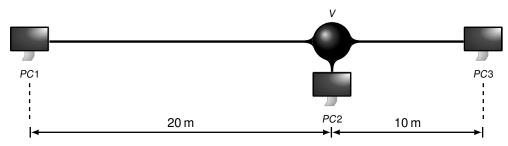


Figure 2.1: Waternet consisting of three computers and one distribution unit.

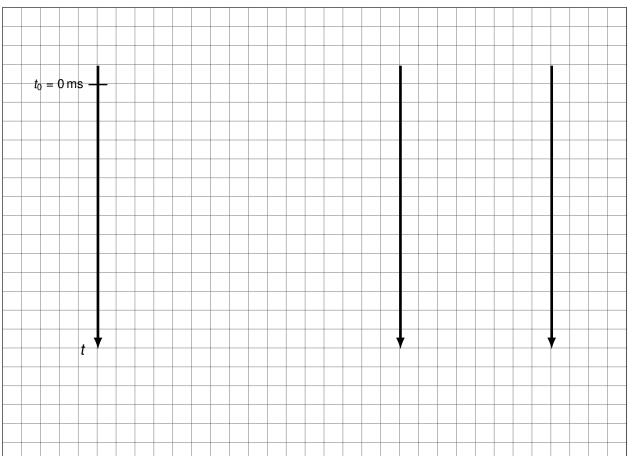
The propagation speed c_{sw} of sound in water at 20 °C is approx. 1500 m/s. This technology, known as Waternet, uses CSMA/CD as the media access method, just like conventional Ethernet. The transmit rate is 1 Mbit/s.

a)* Which device does the distribution unit V in an ordinary Ethernet correspond to? Give a reason for your answer.

At time $t_0 = 0 PC1$ starts to transmit a frame of 1500 B.

c)* Determine the propagation delay t_0 between PC1 and PC2.

0	
1	
~	
2	


b)*	Determine	the ser	ialization	time t _s .	
0)	Determine		anzation	time is.	

_	<u> </u>	 	 	 <u> </u>	 	 	, p	 	 	 	 	 		 	 	 	 	

At time $t_1 = 15 \text{ ms } PC2$ and PC3 also have data to be transmitted, 1500 B each.

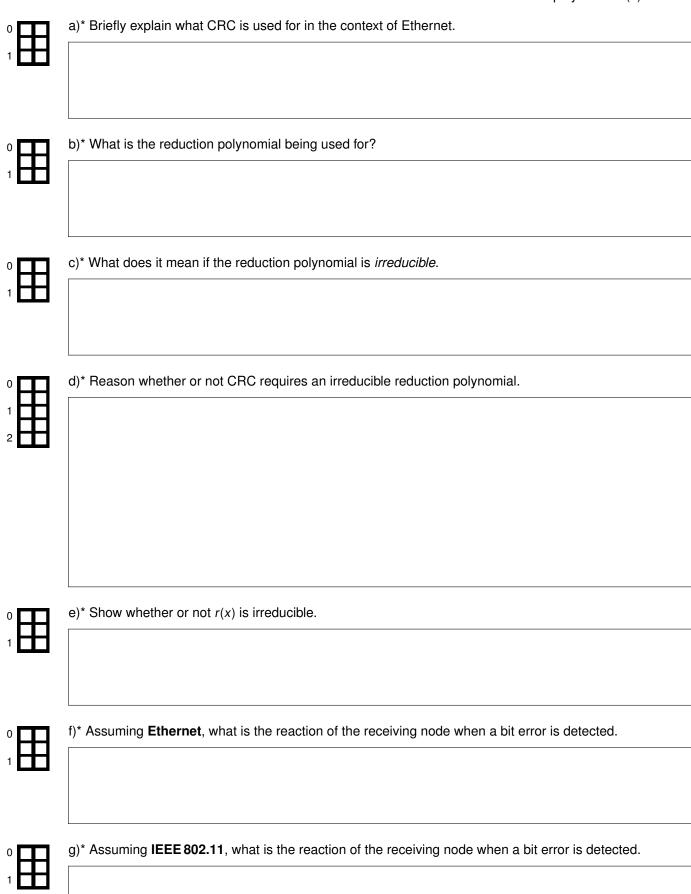
d) Draw a network communication diagram that shows all events starting at $t_0 = 0$ ms. In case there is a jam signal, it is sufficient to mark its starting time. Completely mark the diagram (devices, serialization time, and propagation delay). **Scale:** horizontally 1 cm \triangleq 2.5 m, vertically 1 cm \triangleq 10 ms.

e) Reason whether or not CSMA/CD correctly works under these conditions.

f) Suggest a modification so that CSMA/CD works correctly. We expect a calculation here.

0	uy	yes	۱a	1110	um	Jali	50 1	inai	. 00	זועוכ	10	VOIT	15 0	,011	ecu	y. v	ve	evh	au	aic	uia				

0


2

3

I		0
		1
I		2

Problem 3 CRC (15 credits)

In this problem we consider the binary message 00100110 which should be protected by a CRC as we introduced it for Ethernet-based networks in the lecture. We assume the reduction polynomial $r(x) = x^2 + 1$.

h)* Determine the CRC checksum for the given message (see beginning of the problem).

,	 			 		 -	3	-	-	9- \		3	 3 -	-	- 1-	 -	'			
																				-
					 						 					 				-

i) Explicitly state the transmitted message.

Let us assume a different message (including its checksum): 111011010010111001. Assume that this message is transmitted and arrives as 111011010010111100 at the receiver.

j)* Argue whether or not the error is being detected.

2 3

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

		 _		 	 			 		 	 							
<u> </u>																		
		_			 			 	 		 	 	 	 		 	 	
		 _		 	 			 		 	 							
<u> </u>		_			 			 					 					
<u> </u>					 			 			 		 				 	
L																		
																		_
<u> </u>		_			 			 					 		 			
<u> </u>					 			 					 					
]]]]]						
<u> </u>		_																
<u> </u>		_																