Chair of Network Architectures and Services School of Computation, Information and Technology Technische Universität München

EexamSticker mit SRID hier einkleben.

Hinweise zur Personalisierung:

- Ihre Prüfung wird bei der Anwesenheitskontrolle durch Aufkleben eines Codes personalisiert.
- Dieser enthält lediglich eine fortlaufende Nummer, welche auch auf der Anwesenheitsliste neben dem Unterschriftenfeld vermerkt ist.
- Diese wird als Pseudonym verwendet, um eine eindeutige Zuordnung Ihrer Prüfung zu ermöglichen.

Grundlagen Rechnernetze und Verteilte Systeme

Klausur: IN0010 / Retake Datum: Freitag, 4. Oktober 2024

Prüfer: Prof. Dr.-Ing. Georg Carle **Uhrzeit:** 11:00 – 12:30

Bearbeitungshinweise

- Diese Klausur umfasst 16 Seiten mit insgesamt 7 Aufgaben sowie den bekannten Cheatsheet.
 Bitte kontrollieren Sie jetzt, dass Sie eine vollständige Angabe erhalten haben.
- Die Gesamtpunktzahl in dieser Klausur beträgt 90 Punkte.
- · Das Heraustrennen von Seiten aus der Prüfung ist untersagt.
- · Als Hilfsmittel sind zugelassen:
 - ein nicht-programmierbarer Taschenrechner
 - ein analoges Wörterbuch Deutsch → Muttersprache ohne Anmerkungen
 - das mit der Klausur ausgeteilte Cheatsheet
- Mit * gekennzeichnete Teilaufgaben sind ohne Kenntnis der Ergebnisse vorheriger Teilaufgaben lösbar.
- Es werden nur solche Ergebnisse gewertet, bei denen der Lösungsweg erkennbar ist. Auch Textaufgaben sind grundsätzlich zu begründen, sofern es in der jeweiligen Teilaufgabe nicht ausdrücklich anders vermerkt ist.
- Schreiben Sie weder mit roter/grüner Farbe noch mit Bleistift.
- Schalten Sie alle mitgeführten elektronischen Geräte vollständig aus, verstauen Sie diese in Ihrer Tasche und verschließen Sie diese.

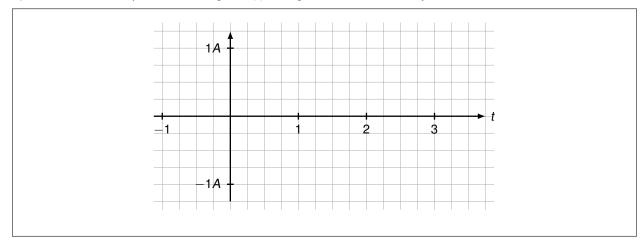
Hörsaal verlassen von _	bis	/	Vorzeitige Abgabe um

Aufgabe 1 Multiple Choice (18 Punkte)

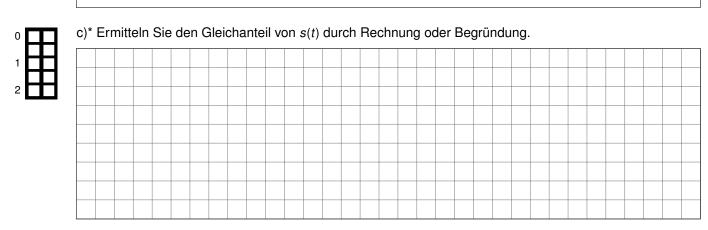
Die folgenden Teilaufgaben sind Multiple Choice / Multiple Answer, d. h. es ist jeweils mind. eine Antwortoption korrekt. Teilaufgaben mit nur einer richtigen Antwort werden mit 1 Punkt bewertet, wenn richtig. Teilaufgaben mit mehr als einer richtigen Antwort werden mit 1 Punkt pro richtigem und -1 Punkt pro falschem Kreuz bewertet. Fehlende Kreuze haben keine Auswirkung. Die minimale Punktzahl pro Teilaufgabe beträgt 0 Punkte.

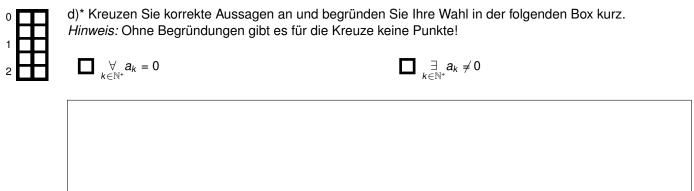
Kreuzen Sie richtig Kreuze können du		Ausfüllen gestrichen v	werden						
	•	•	urkierung erneut ange	ekreuzt werden X					
a)* 1f 00 ist die hexa	dezimale Darstellu	ng für die Zahl 7936	in welcher Byte-Orde	er?					
Little-Endian	☐ Low-E	ndian	Middle-Endian	☐ Big-Endian					
AS-Byte-Order	☐ Cloud-		Network-Byte- Order	☐ Host-Byte-Order					
b)* Welche der folge digitale Modulationsv		glichkeiten stehen fü	ir im Rahmen der V	orlesung kennengelernte					
☐ ASP	☐ NRZ	QAP	☐ QRM	■ Tiefpassfilter					
☐ Keine	☐ QMP	☐ ASF	☐ TSA	■ Brieftaube					
c)* Welches Zeichen	hat in der folgende	en Zeichenkette den l	nöchsten Information	sgehalt?					
ABBACCADDAEEAGHG									
☐ G	□E		D	□ A					
В	□ C		Н						
d)* Der Knoten zu we geringste Tiefe?	lchem der Zeichen	der obigen Zeichenk	sette hätte im zugehö	rigen Huffmann-Baum die					
□н	□ A		В	□ E					
D	С		G						
e)* Welche Aussager	zu IEEE 802.11 <i>A</i>	Access Points (APs) s	sind richtig?						
APs werden gr und sind daher	undsätzlich direkt nie transparent.		APs sind für Teilneh losen Netzwerks trar	mer außerhalb des kabel- nsparent.					
APs sind nur in werks transpare	nerhalb des kabe nt.	llosen Netz-	APs sind für alle Teil	nehmer transparent.					
f)* Wie viele nutzbare	Host-IPv4 Adress	en sind im Präfix 193	3.77.96.0/19?						
524286	32	1022	5 10	524288					
$\square > 10^{32}$	1024	5 12	8190	8192					

g)* Welche Eiger	nschaften besitzt IPv6 <i>in</i>	n Vergleich zu l	IPv4?)				
Keine Frag	mentierung bei Routern			feste Heade	ergröße	Э		
automatisc	he MAC-Vergabe über S	SLAAC		kein L4-Pro	tokoll r	nötig		
Longest-Pr	refix-Matching möglich		kleinerer Adressraum					
264-fach gr	ößerer Adressraum			keine Switc	he nöt	ig		
h) Washa dar fal	gandan Ayaaagan bazü	aliah dar ID Ad	drood	o ff02 . 1 .	SS F	عام منمط اد	orrolet?	
	genden Aussagen bezü	giich der iP-Adi						
<u>_</u>	ine Loopback Adresse.			Die IP ist ei				
	ine Unicast Adresse.	_	Die IP ist ei					
☐ Die IP ist e	ine Broadcast Adresse.			Die IP ist e fangszeiten			Relikt aus den <i>P</i>	۱n-
i)* Welche Head	erfelder werden durch ei	ne klassische I	NAT k	oei ausgehe	enden	Paketen i	mmer veränder	t?
Protocol	☐ Dst-Port	Src-P	ort		Ost-IP		☐ Src-IP	
j)* Welche Eigen	schaften hat UDP?							
Das Sende namisch ar	efenster wird dy- ngepasst.	Es gibt Mec Flusskontrolle		smen der		Es werde versendet	en Bestätigung t.	en
Kann durc	h IPv6 nicht ver-	Das Empfandynamisch au	_			Stream-o		1
	nnen in anderer e ankommen und werden.	Nachrichten-	orien	tiert		Es gibt in Staukontr	Mechanismen d olle.	er
,	orlesung vorgestellte (ve dance Phase. Es wurde	,			-			
☐ Das Stauko	ontrollfenster bleibt unve	rändert.		Das Stauko wert für die			rd auf den Grer	٦Z-
	vert für die Stauvermeidu Iktuelle Fenstergröße ge	•				_	၂ auf eine MSS (je-
☐ Das Stauko	ontrollfenster wird halbie	rt.			ımııs o	eht in den	Slow-Start.	
Das Stauko größert.	ontrollfenster wird um ein	e MSS ver-		-	_		r CA-Phase.	
,	rlesung vorgestellte (ver dance Phase. Es tritt ei				rollalg	orithmus t	oefinde sich in d	ler
	controllfenster wird auf o Stauvermeidung geset:			Der Algorith	ımus b	leibt in de	r CA-Phase.	
	hmus geht in den Slow-S			Das Stauko	ntrollfe	enster wird	l halbiert.	
_	ontrollfenster bleibt unve			Das Stauko setzt.	ntrollfe	enster wird	l auf eine MSS (je-
☐ Das Stauko größert.	ontrollfenster wird um ein	ie MSS ver-		Der Grenzw			ermeidung wird a öße gesetzt.	uf


Aufgabe 2 EKG-Frequenzanalyse (14 Punkte)

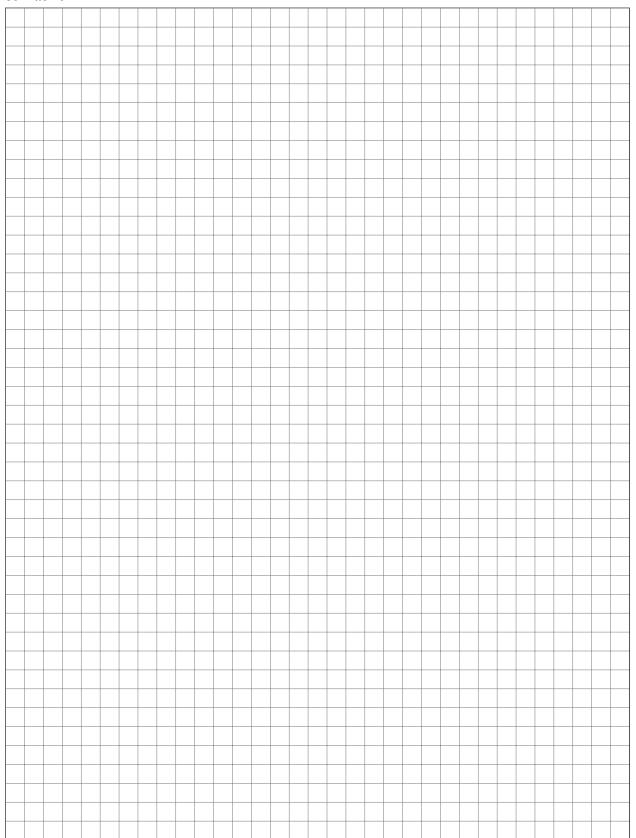
Wir wollen das Spektrum eines Signals bestimmen. Das Signal s(t) besteht aus periodischen Wiederholungen des Grundimpulses g(t) mit Periodendauer T = 2.

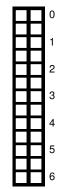

$$g(t) = \begin{cases} 2At + A & -\frac{1}{2} \le t \le 0\\ 2At - A & 0 < t \le \frac{1}{2}\\ 0 & \text{sonst} \end{cases}$$



a)* Zeichen Sie das periodische Signal s(t) in folgendes Koordinatensystem ein.

ı kann. Begründen Sie





$$b_{k} = 2A \cdot \left(\int_{-\frac{1}{2}}^{\frac{1}{2}} t \sin(k\pi t) dt - \int_{0}^{\frac{1}{2}} \sin(k\pi t) dt \right)$$
 (2.1)

Bei der Berechnung der Sinusanteile b_k ist das Zwischenergebnis aus Formel 2.1 erreichbar.

e)* Geben Sie den Rechenweg zum Zwischenergebnis 2.1 an und erklären Sie nicht offensichtliche Rechenschritte kurz.

Aufgabe 3 Adressierung (5 Punkte)

Gegeben sei die folgende Topologie. Der PC habe eine Anfrage an den Server geschickt und wir betrachten nun die Antwort vom Server zum PC an den drei Punkten P1, P2 und P3. Router R2 betriebt NAT und ändert entsprechend Adressen und Ports beim Weiterleiten in das private Netzwerk zum PC.

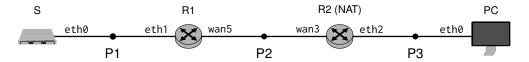
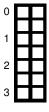



Abbildung 3.1: Netzwerktopologie

a)* Füllen Sie in der folgenden Tabelle die Ethernet und IP-Adressen des Rahmens bzw. Pakets aus, wie Sie am jeweiligen Punkt beobachtet werden. Nutzen Sie für MAC- und IP-Adressen die Notation *Gerät.Interface.Adresse*, also z.B. *PC3.eth0.MAC*.

	SRC-MAC	DST-MAC	SRC-IP	DST-IP	
	P1				_
	P2				_
	P3				_
					_
					_
	-				_
					_
)* Ange	nommen, S wählt als TTL o	den Wert 4. Begründ	den Sie kurz, ob d	as Paket beim PC a	ankomn
	rerden die Netze 10.222.1	5.128/26 und 10.2	22.15.192/26 zus	sammengetasst. Ne	ennen :

Aufgabe 4 Legend of the Galactic High-Speed Satellite Communication (12 Punkte)

Sie arbeiten bei der intergalaktischen Telekom und sollen die Dimensionierung einer neuen Satellitenübertragungsstrecke zwischen den Planeten Odin und Fezzan planen. Ihr Konkurrent FezzSat hat diese Verbindung bereits mit Satelliten gleichen Typs realisiert.

Folgende Informationen sind bekannt:

- Die Satelliten unterstützen eine maximale Rahmengröße inklusive Header von 2304 B.
- Die Distanz zwischen Odin und Fezzan beträgt 7000 Lj (1 Jahr sind 365 Tage). [a]

Bestimmung der Fehlerrate

Ihr Chef möchte Geld sparen und plant, zwischen Sende- und Empfangsstation N = 99 Satelliten äquidistant zu verwenden. Somit kommt es zu insgesamt 100 Übertragungen. Sei $p_0(d)$ die Bitfehlerwahrscheinlichkeit

⟨ ~									
	nrscheinlich Itzen Sie fo								
		p _e (d) =	- (10	$\left(\frac{320}{d/1}\right)$	<u>_j</u>)				

[[]a] 1 Lj ist die Strecke, die Licht im Vakuum in genau einem Jahr zurücklegt.

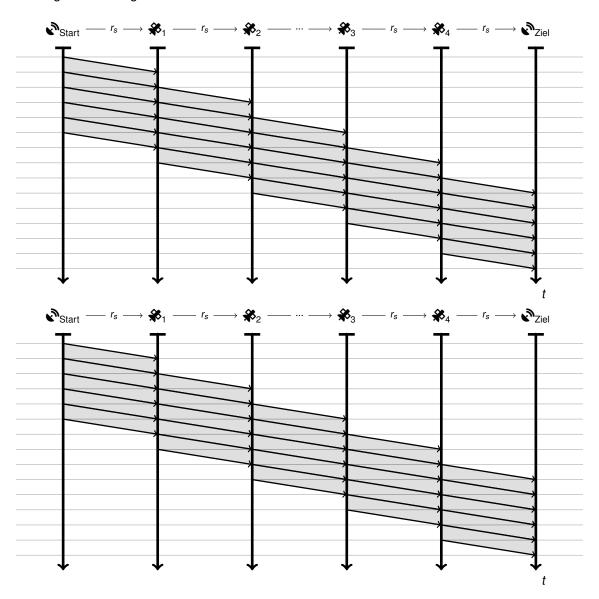
Aufbau der Übertragungsdauer bei Paketvermittlung

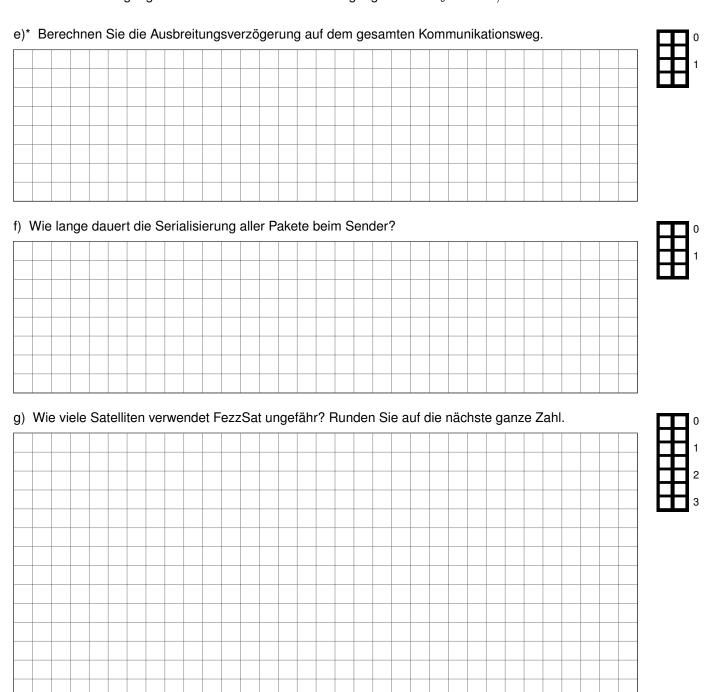
Um besser zu verstehen, wie die Gesamtübertragungsdauer einer Datenmenge *L* bei Paketvermittlung zustande kommt, sollen Sie dies an einem konkreten Beispiel mit 5 Paketen und 4 Satelliten grafisch nachvollziehen.

Die folgenden Zeiten sind für die Gesamtübertragungsdauer relevant.

- 1. Serialisierungszeit ts
- 2. Ausbreitungsverzögerung tp
- 3. Verzögerung t_z bei der Datenübertragung bei **jedem** Satelliten

d) Markieren Sie die obigen Zeitdauern an passender Stelle in der schematischen Darstellung der Paketübermittlung in Abbildung 4.1.




Abbildung 4.1: Schematische Darstellung der Übertragung von 5 Paketen über 4 Satelliten. Wenn Sie beide Vorlagen verwenden, streichen Sie die nicht zu korrigierende durch!

Schätzung der Anzahl der Satelliten

Ihr Chef möchte wissen, wie viele Satelliten FezzSat ungefähr verwendet. Um dies zu bestimmen, hat Ihr Bekannter eine Testdatei der Größe $L=6\,\mathrm{MiB}$ über das Satellitennetzwerk von FezzSat versendet, welches für diesen Test exklusiv gebucht wurde.

Aus diesem Test und weiteren Nachforschungen konnten Sie folgende Informationen herausfinden:

- Die Distanz zwischen Odin und Fezzan beträgt 7000 Lj (1 Jahr sind 365 Tage).
- Die Gesamtübertragung benötigt laut Ihren Messungen T = 26755,66 s.
- Die Daten wurden in insgesamt $N_p = 3101$ Pakete aufgeteilt.
- Die Verzögerung der Datenübertragung jedes Satelliten beträgt $t_z = \frac{384}{875}$ s.
- Die relative Ausbreitungsverzögerung der Verbindungen beträgt $\nu = 8,76 \cdot 10^6$. [b]
- Die Headergröße der Pakete beträgt jeweils $L_H = 275 \, \text{B}$.
- Jede Übertragungsstrecke sendet mit einer Übertragungsrate von $r_s = 42 \, \text{kbit/s}$.

^[b]Somit handelt es sich hierbei um eine Überlichtgeschwindigkeitsübertragung.

Aufgabe 5 Drahtposthai (15 Punkte)

Gegeben sei der Ethernet-Rahmen (ohne FCS) aus Abbildung 5.1, welcher im Folgenden analysiert werden soll.

0x0000	b4	96	f4	ae	80	6c	30	61	80	06	80	00	86	dd	60	07
0x0010	45	3d	00	30	06	40	20	01	4c	a0	20	01	00	00	07	32
0x0020	00	00	00	00	dc	91	20	01	4c	a0	20	01	00	00	02	16
0x0030	3e	ff	fe	52	ed	14	e2	74	00	19	e9	07	92	c5	5b	0b
0x0040	53	5a	80	18	01	fb	ee	b8	00	00	01	01	08	0a	b8	ba
0x0050	4a	00	2b	cf	d4	80	45	48	4c	4f	20	67	72	6e	76	73
0x0060	2e	6e	65	74	0d	0a										

Abbildung 5.1: Ethernet-Rahmen (ohne FCS)

Beachten Sie, dass für nachfolgende Teilaufgaben Begründungen erforderlich sind. Achten Sie darauf, dass Markierungen eindeutig einzelnen Teilaufgaben zugeordnet werden können. Nicht nachvollziehbare Aussagen werden nicht bewertet.

0	a)* Markieren	Sie in Abbildung 5.1 die Absenderadresse auf Schicht 2. (ohne Begründung)
ш	b)* Markieren	Sie in Abbildung 5.1 die Empfängeradresse auf Schicht 2. (ohne Begründung)
0	c)* Von welche	em Typ ist die L3-PDU?
0	Тур:	Begründung:
	d) Geben Sie	die Absenderadresse auf Schicht 3 in ihrer üblichen, ggf. gekürzten Schreibweise an.
'		
0	e) Geben Sie	die Empfängeradresse auf Schicht 3 in ihrer üblichen, ggf. gekürzten Schreibweise an.
1 🖽		
0	f) Begründen S wurde.	Sie, durch welchen Mechanismus die Empfängeradresse auf Schicht 3 vermutlich zugewiesen
'Ш		
0	g) Von welcher	m Typ ist die L4-PDU?
1	Тур:	Begründung:

h) An welcher Stelle ir	m Frame beginnt die L4-PDU?	
Offset:	Begründung:	
i) Um welches L7-Pro	tokoll handelt es sich vermutlich?	FF
Protokoll:	Begründung:	
j) An welcher Stelle im	n Frame beginnt die L7-PDU?	FI
Offset:	Begründung:	
	ersten 4 Bytes der L7-Payload. sich um ein text-basiertes Protokoll (ASCII).	
I) Wofür wird das L7-F	Protokoll verwendet?	

Aufgabe 6 DNS (14.5 Punkte)

Sie haben von Kommilitonen gehört, dass auf grnvs.tum.de Klausurlösungen zu finden sind. In der Hoffnung, die Lösung der diesjährigen Retake zu finden, rufen Sie die Website in Ihrem Browser auf. Sie befinden sich in einem kleinen Heimnetz und der Router **R1** ist am Internet angeschlossen. Per DHCP konfiguriert **R1** sich selbst als Standard Resolver auf Ihrem Laptop **C1**. Auf **R1** ist **R2** als Resolver eingetragen.

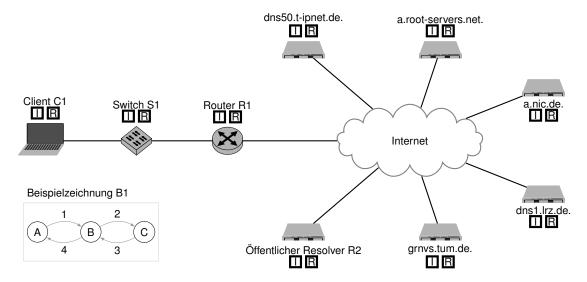
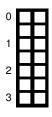
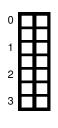




Abbildung 6.1: Vereinfachte Internettopologie

- a)* Zeichnen Sie in Abbildung 6.1 alle DNS-Anfragen und Antworten ein, die zu der Namensauflösung von grnvs. tum. de notwendig sind. Zeichnen sie Pfeile und **nummerieren Sie sie in der Auftrittsreihenfolge** wie in dem Beispielzeichnung **B1**. Gehen Sie davon aus, dass **alle Caches leer** sind. Sie wissen:
 - 1. a.nic.de is der autoritative Nameserver der Zone de.
 - 2. dns1.lrz.de is der autoritative Nameserver der Zone tum.de.

Einen zusätzlichen Vordruck finden Sie am Ende der Klausur in Abbildung 7.2.

b) Markieren Sie für die verwendeten Netzwerkkomponenten, ob diese DNS Anfragen iterativ (Π) oderekursiv (Π) auflösen, indem sie das jeweilige Feld ankreuzen. Begründen Sie Ihre Wahl.									

c)* Wie kann der Resolver die Anfrage an dns1.1rz.de stellen, ohne zuvor dessen Domain explizit aufzulösen?

Sie sind Werkstudent und haben die Aufgabe bekommen, eine Zonefile für grnvs. net zu erstellen. Füllen Sie die folgende Zonefile so aus, dass die Anforderungen der einzelnen Teilaufgaben erfüllt werden. Der Anfang der Zonefile ist bereits vorgegeben (der SOA Record ist zur Einfachheit abgekürzt).

Tragen Sie für die folgenden Teilaufgaben den Buchstaben der zugehörigen Teilaufgabe in die gepunktete Box am Ende jeder Zeile ein.

\$TTL 86400 ; 1 da	ay IN	SOA	ns.grnvs.net. info.grnvs.net.	г 1
grnvs.net.	III	NS NS	ns.grnvs.net.	LJ
6				
			J [
				:
			<u> </u>	;;
				;
			1	
Server dns2.1rz.de	als sekundärer Na	imeserver agieren.	er Zone eingetragen. Zur Ausfallsicher Tragen Sie diesen ein. 5.217.202.138 erreichbar sein.	neit soll der
			soll die GRNVS Website angezeigt w 32.10 und 2a00:4700:0:9:f::.	verden. Der
	nicht selber betre	eiben zu müssen,	hicken können, muss ein Mailserver e soll mit Priorität 10 nur der LRZ E-N	
			I und Bonuspunkte verkauft werden. grnvs.net als ein Alias für grnvs.mys	

Aufgabe 7 Kurzaufgaben (11.5 Punkte)

(a) Kollisionsdomänen

Die folgenden Kurzaufgaben sind unabhängig voneinander lösbar.

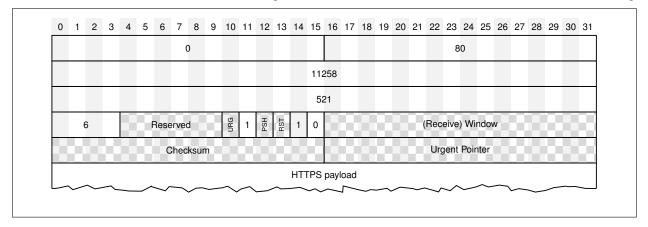

0 1 2	a)* Gegeben sei folgende IPv6 hörige <i>Solicited Node Address</i> Solicited Node Address				Vie lautet d	lie der IP Adress	e zuge-
	Multicast-MAC Adresse						
0 1 2	b)* Nennen Sie vier in der Vorle ① ③	esung vorgestellte M	ultiplex-Ve	erfahren be:	züglich des	s Medienzugriffs	
0 1	c)* Markieren Sie in Abbildung d)* Markieren Sie in Abbildung				-		y
				<u> </u>			

Abbildung 7.1: Netzwerktopologie

(b) Broadcastdomänen

e) Wir betrachten den TCP-Header einer HTTPS-Verbindung, wobei es sich hier um das erste Paket vom Client zum Server nach dem TCP-Handshake handelt. Etwas scheint an dem Header aber nicht zu stimmen. Markieren Sie alle Fehler im Header und korrigieren Sie diese. Verwenden Sie sinnvolle Werte, wo notwendig.

0	
1	
2	
3	

f) Geben Sie für eine TCP Verbindung die richtige Reihenfolge aller notwendigen Socket-Methodenaufrufe an. Es soll genau eine Nachricht von einem Client zu einem Server gesendet werden.

Server	
Client	

Zusätzlicher Platz für Lösungen. Markieren Sie deutlich die Zuordnung zur jeweiligen Teilaufgabe. Vergessen Sie nicht, ungültige Lösungen zu streichen.

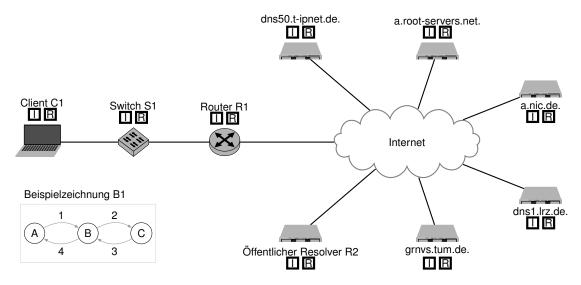
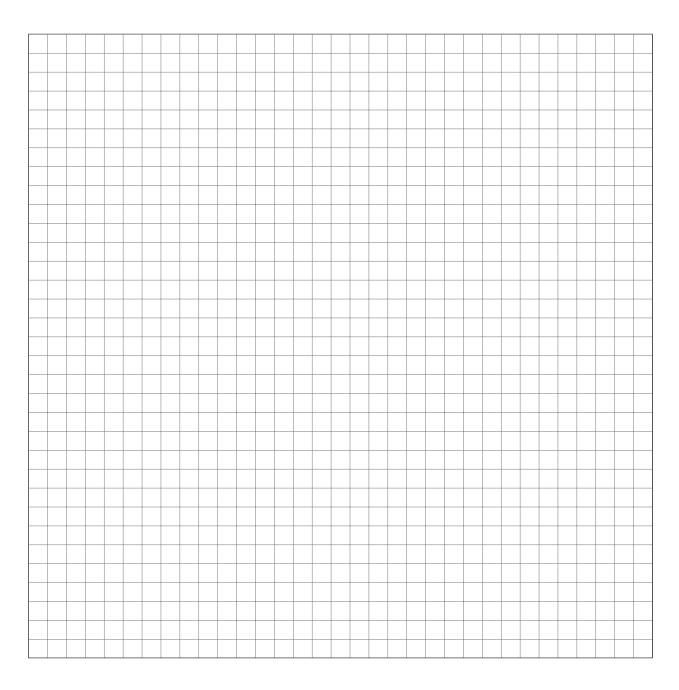
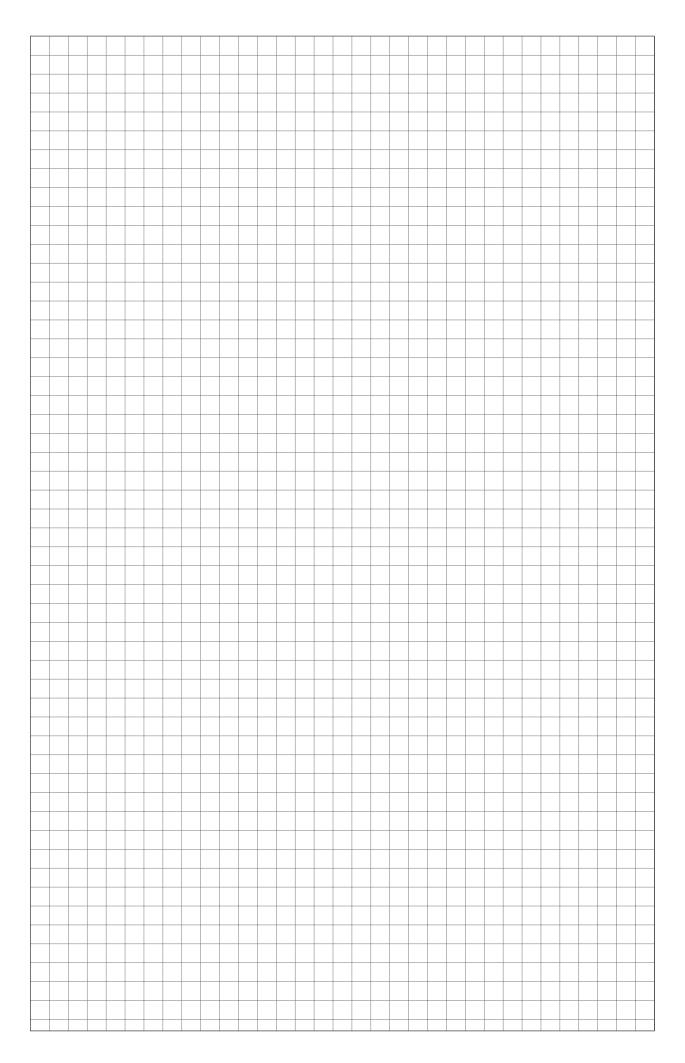




Abbildung 7.2: Zusätzlicher Vordruck für Aufgabe 6a)

