Chair of Network Architectures and Services School of Computation, Information and Technology Technische Universität München

Eexam Sticker wird generiert

Bestätigung der Verhaltensregeln

Hiermit versichere ich, dass ich diese Klausur ausschließlich unter Verwendung der unten aufgeführten Hilfsmittel selbst löse und unter meinem Namen abgebe.

Unterschrift oder vollständiger Name, falls keine Stifteingabe verfügbar

Grundlagen Rechnernetze und Verteilte Systeme

Klausur: IN0010 / Quiz 1 Datum: Montag, 13. Mai 2024

Prüfer: Prof. Dr.-Ing. Georg Carle **Uhrzeit:** 19:00 - 19:15

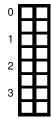
Vergessen Sie nicht, die Verhaltensregelen (siehe oben) durch Unterschrift oder Eintragung Ihres Namens (falls keine Stifteingabe verfügbar) zu bestätigen. Abgaben ohne Bestätigung werden nicht gewertet.

Bearbeitungshinweise

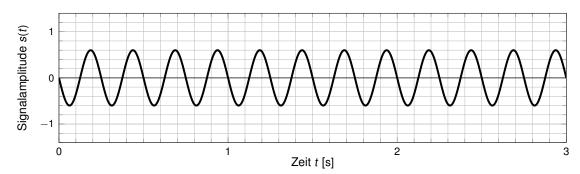
- Diese Klausur umfasst 6 Seiten mit insgesamt 2 Aufgaben. Bitte kontrollieren Sie jetzt, dass Sie eine vollständige Angabe erhalten haben.
- Die Gesamtpunktzahl in dieser Klausur beträgt 16 Punkte.
- Das Heraustrennen von Seiten aus der Prüfung ist untersagt.
- · Als Hilfsmittel sind zugelassen:
 - alles außer Gruppenarbeit, Plagiarismus und jede Art von KI (z. B. ChatGPT)
- Mit * gekennzeichnete Teilaufgaben sind ohne Kenntnis der Ergebnisse vorheriger Teilaufgaben lösbar.
- Es werden nur solche Ergebnisse gewertet, bei denen der Lösungsweg erkennbar ist. Auch Textaufgaben sind grundsätzlich zu begründen, sofern es in der jeweiligen Teilaufgabe nicht ausdrücklich anders vermerkt ist.
- Antworten Sie bei Freitextaufgaben stets in Ihren eigenen Worten. Fremde oder kopierte Antworten werden nicht akzeptiert.
- Verstöße gegen die Verhaltensregeln führen zum Ausschluss aus dem Bonusverfahren.
- Schreiben Sie weder mit roter/grüner Farbe noch mit Bleistift.

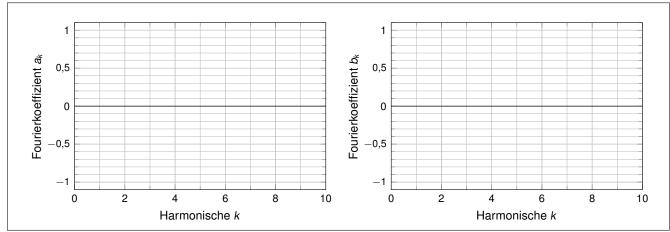
Aufgabe 1 Multiple Choice (9 Punkte)

Die folgenden Aufgaben sind Multiple Choice/Multiple Answer, d. h. es ist jeweils mind. eine Antwortoption korrekt. Teilaufgaben mit nur einer richtigen Antwort werden mit 1 Punkt bewertet, wenn richtig. Teilaufgaben mit mehr als einer richtigen Antwort werden mit 1 Punkt pro richtigem und -1 Punkt pro falschem Kreuz bewertet. Fehlende Kreuze haben keine Auswirkung. Die minimale Punktzahl pro Teilaufgabe beträgt 0 Punkte.

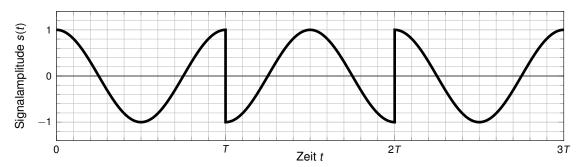

Kreuze können	ntige Antworten an durch vollständiges tworten können dur	_		ut angekreuzt werd	⊠ ■ den ×■	
a)* In welchen So verwendet werde		ntenübertragung ka	nn ein verlustfrei	es (De-)Kompress	sionsverfahren sinnvol	
Detektion		Kanaldekoo	lierung	☐ Modulat	tion	
Quellenkodierung		Demodulation	☐ Demodulation		Kanalkodierung	
☐ In keinem Schritt		Quellendek	Quellendekodierung		Leitungskodierung	
b)* Welche SNR gemessen wird?		einer Leistung von 1	_	vird und eine Rau $lacksquare$ \sim 28,239 dB	schleistung von 10 μW $luelton$ \sim 666,67	
c)* Welche Codev maximal 0,5 zu qu		estens benötigt, um	Werte im Interva	II $I_Q = [90; 270]$ mit	t einer Schrittweite vor	
7 bit	1 bit	8 bit	9 bit	☐ 360 bit	■ 180 bit	
	te Signalstufe, wenr nlern quantisiert we		Signal im Interva	II $I_Q = [14; 18]$ mit 8	3 Stufen und minimaler	
13,750	13,250	16,000	14,250	14,125	14,000	
, 3 [erfahren könnte folg	gendes Signal mode	uliert worden sein	1?		
Signalamplitude s(t)		T	Zeit t	27	37	
☐ SAK	AQM F	DM KSP	☐ PSK	QAM	ASK LMU	
f)* Eine Quelle er	nittiert Zeichen des	Alphabets $\mathcal{X} = \{$ " Ψ	"}. Wie groß ist d	ie Entropie der Qı	uelle?	
\square ∞	2 bit	☐ 1 bit		anderer Wert	0 bit	

Im Folgenden betrachten wir ein Schichtenmodell, welches of Schicht 1 modelliert hier die Erzeugung eines Aztec-Cod Ticketdaten.				
g)* Um welche Art der Kommunikation handelt es sich bei der Kontrolle des Codes?				
bidirektionale Kommunikation	nondirektionale Kommunikation			
unidirektionale Kommunikation	☐ tridirektionale Kommunikation			


¹Ein Aztec-Code ist ein zweidimensionaler Code ähnlich zu einem QR- oder DataMatrix-Code.


Aufgabe 2 Kurzaufgaben (7 Punkte)

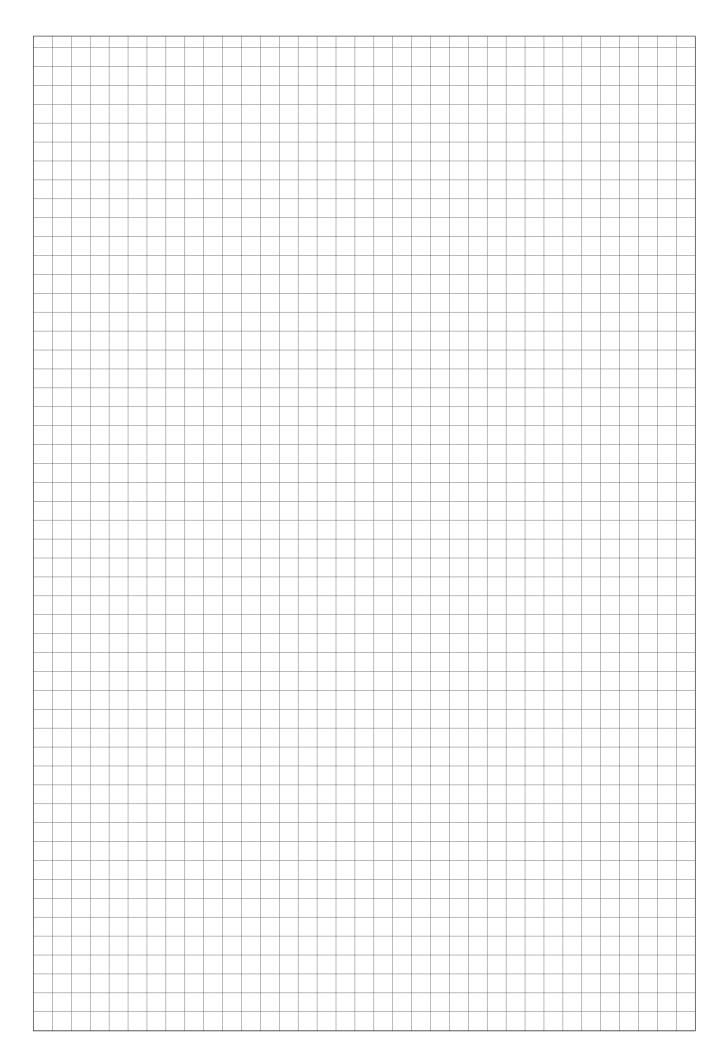
Die nachfolgenden Teilaufgaben sind jeweils unabhängig voneinander lösbar.


a)* Gegeben sei das untenstehende, periodische Zeitsignal s(t). Hierbei gilt $\omega = \frac{2\pi}{T}$, mit T=1 s. Zeichnen Sie im Lösungsfeld das zu s(t) gehörende Spektrum **einschließlich Nullstellen**.

	Harmonische k	Harmonische k			
0	b)* Beschreiben Sie kurz in eigenen Worten , was unter Taktrückgewinnung zu verstehen ist.				
1					
0	c)* Nennen Sie einen taktrückgewinnenden Leitungscode.				
ш					

Sie haben bei der Bundesnetzagentur das Recht erstanden, auf dem Frequenzband von 2347 MHz bis 2385 MHz zu senden. Nun haben Sie ein Signal mit 2-ASK auf eine Trägerfrequenz von 2366 MHz moduliert und daraus das folgende Signal s(t) erhalten:


Das Signal s(t) passt so noch nicht auf den Kanal und sollte so niemals gesendet werden.


d)* Was müssen Sie mit dem Signal noch machen, damit Sie es über den Kanal senden können? Begründen Sie, warum dies notwendig ist.

Hinweis: Achten Sie insbesondere auf die Sprünge im Signal.

Zusätzlicher Platz für Lösungen. Markieren Sie deutlich die Zuordnung zur jeweiligen Teilaufgabe. Vergessen Sie nicht, ungültige Lösungen zu streichen.

