Chair of Network Architectures and Services School of Computation, Information and Technology Technische Universität München

EexamSticker mit SRID hier einkleben

Hinweise zur Personalisierung:

- Ihre Prüfung wird bei der Anwesenheitskontrolle durch Aufkleben eines Codes personalisiert.
- Dieser enthält lediglich eine fortlaufende Nummer, welche auch auf der Anwesenheitsliste neben dem Unterschriftenfeld vermerkt ist.

• Diese wird als Pseudonym verwendet, um eine eindeutige Zuordnung Ihrer Prüfung zu ermöglichen. Grundlagen Rechnernetze und Verteilte Systeme Klausur: IN0010 / Endterm-90 Dienstag, 8. August 2023 Datum: Prüfer: Prof. Dr.-Ing. Georg Carle 16:30 - 18:00**Uhrzeit:** Bevor wir mit dem Verlesen der Bearbeitungshinweise fortfahren, bitten wir Sie die nachfolgenden Fragen zu beantworten. Mit diesen Angaben helfen Sie uns, den Lernerfolg in Abhängigkeit einzelner Vorlesungsbestandteile zu untersuchen. Die Angaben sind freiwillig und fließen nicht in die Bewertung ein. Um eine Beeinflussung auszuschließen, wird diese Seite während der Korrektur nicht zugänglich gemacht. a) Haben Sie die Vorlesung besucht? 4 (nie) ☐ 1 (regelmäßig) b) Haben Sie sich die Aufzeichnung des Vorjahres angesehen? ☐ 1 (regelmäßig) 4 (nie) c) Haben Sie die Tutorübungen besucht? ☐ 1 (regelmäßig) 4 (nie) d) Haben Sie am Live-Programming teilgenommen (TCP UDP Chat)? An einem Termin ☐ Ja (beide Termine) Nein Bearbeitungshinweise • Diese Klausur umfasst 12 Seiten mit insgesamt 6 Aufgaben. Bitte kontrollieren Sie jetzt, dass Sie eine vollständige Angabe erhalten haben. Die Gesamtpunktzahl in dieser Klausur beträgt 90 Punkte. · Das Heraustrennen von Seiten aus der Prüfung ist untersagt. · Als Hilfsmittel sind zugelassen: - ein nicht-programmierbarer Taschenrechner

- ein analoges Wörterbuch Deutsch ↔ Muttersprache ohne Anmerkungen
- Mit * gekennzeichnete Teilaufgaben sind ohne Kenntnis der Ergebnisse vorheriger Teilaufgaben lösbar.
- Es werden nur solche Ergebnisse gewertet, bei denen der Lösungsweg erkennbar ist. Auch Textaufgaben sind grundsätzlich zu begründen, sofern es in der jeweiligen Teilaufgabe nicht ausdrücklich anders vermerkt ist.
- Schreiben Sie weder mit roter/grüner Farbe noch mit Bleistift.
- Schalten Sie alle mitgeführten elektronischen Geräte vollständig aus, verstauen Sie diese in Ihrer Tasche und verschließen Sie diese.

Hörsaal verlassen von bis / Vorzeitige Abgabe um				
	Hörsaal verlassen von _	bis	/ Vorzeitige Abgabe um	

Aufgabe 1 Wireshark (19 Punkte)

Gegeben sei die Netzwerktopologie aus Abbildung 1.1. Der Computer PC versucht eine SSH Verbindung mittels IPv4 zum Server SRV aufzubauen. MAC und IP-Adressen der Geräte sind in Abbildung 1.1 angegeben.

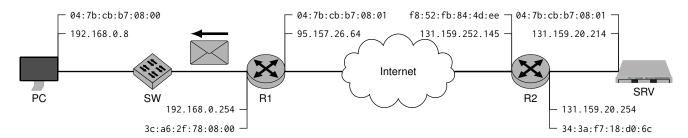
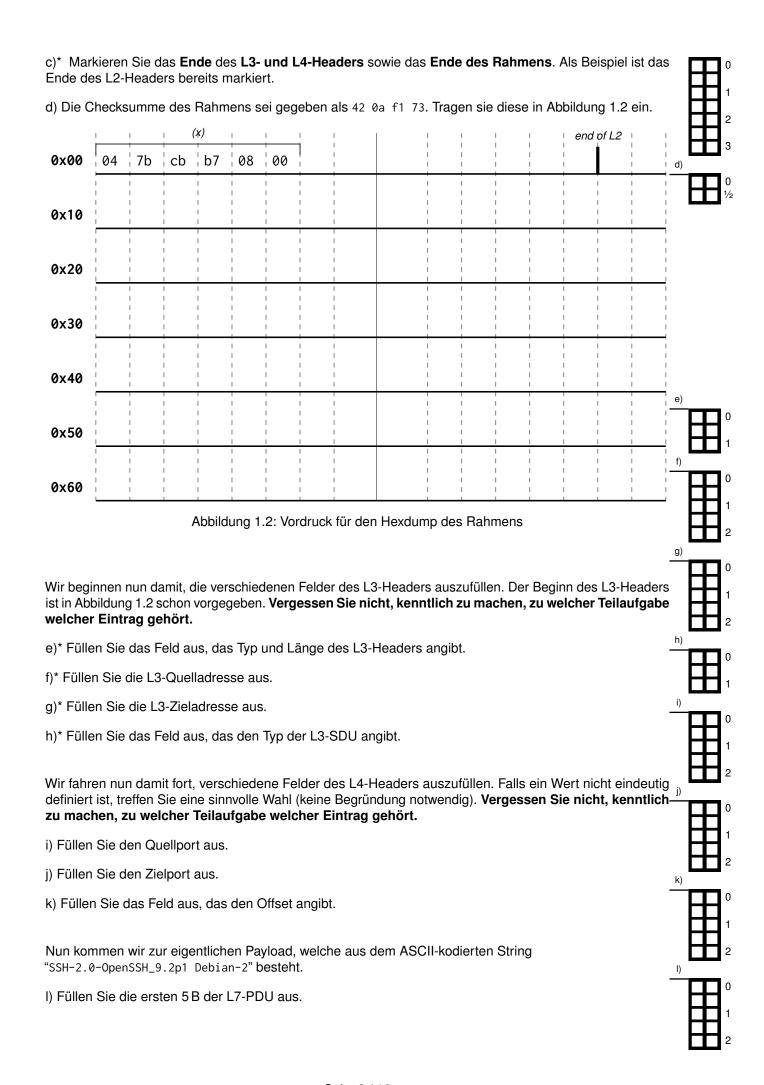


Abbildung 1.1: Netzwerktopologie

Wir betrachten den Rahmen, der von R1 zum PC gesendet wird (siehe Abbildung 1.1). Dabei handelt es sich um die erste Nachricht von SRV **nach** dem TCP-Handshake.

Im Folgenden soll der **Hexdump dieses Rahmens** auf Basis der Informationen aus Abbildung 1.1 sowie den nachfolgenden Teilaufgaben rekonstruiert werden.

Die Lösungen zu den nachfolgenden Teilaufgaben sind direkt in Abbildung 1.2 einzutragen (siehe nachfolgende Seite). **Machen Sie deutlich, zu welcher Teilaufgabe ein Eintrag gehört**, z. B. durch farbliche Hervorhebung oder Angabe der jeweiligen Teilaufgabe oberhalb Ihrer Lösung. Als Beispiel für eine (nicht existierende) Teilaufgabe x) ist die L2 Empfängeradresse bereits eingetragen.


Hinweise: Im fertigen Hexdump können einige Lücken bleiben, da wir nicht alle Inhalte des Rahmens rekonstruieren werden. Der Cheatsheet, der zusammen mit dieser Klausur ausgeteilt wurde, enthält alle notwendigen Haeder und Übersetzungen.

- a)* Tragen Sie die Absender-Adresse auf Schicht 2 in Abbildung 1.2 ein.
- b)* Füllen Sie das Feld in Abbildung 1.2 aus, das den Typ der L3-PDU angibt.

Bevor wir mit dem Ausfüllen fortfahren, sollen die Grenzen verschiedener Header markiert werden. Wir nehmen an, dass

- · der L3-Header keine Optionen nutzt,
- · der L4-Header genau 12 B Optionen besitzt und
- die Gesamtlänge des Rahmens (einschließlich Checksumme) 111 B beträgt.

Aufgabe 2 IP-Routing (17 Punkte)

Sie wollen die Performance von einem neuen Layer 7 Netzwerkprotokoll vermessen. Dazu müssen Sie sich Ihren eigenen Versuchsaufbau konfigurieren. Sie haben bereits drei Server reserviert. Ethernet-Kabel sind an den entsprechenden Interfaces angeschlossen (siehe Abbildung 2.1). Für jede Messung werden Server immer komplett neu aufgesetzt (dies bedeutet, es ist nichts konfiguriert). Alle Server sind an ein Management-Netz (10.1.176.0/20) angeschlossen, der Router **R** hat die Adresse 10.1.176.1.

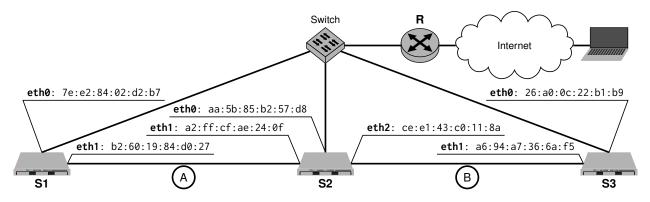
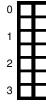


Abbildung 2.1: Netzwerktopologie

Tabelle 2.1: Interfaces und deren IP-Adressen sowie daran angeschlossene Subnetze


Interface (z.B. S1.eth1)	IP-Adresse	Subnetz

a)* **R** erteilt allen Server über DHCP eine zufällige IP-Adresse aus dem Management-Netz und konfiguriert das Default-Gateway. Server sollten immer die selbe Adresse erhalten, berücksichtigen Sie also früher zugeteilte Adressen aus Tabelle 2.2. Füllen Sie Tabelle 2.1 für die betroffenen Interfaces aus.

Tabelle 2.2: IP-Adressen, die bereits früher Servern (identifiziert über die MAC) zugeteilt wurden

	MAC	IP-Adresse
,	7e:e2:84:02:d2:b7 aa:5b:85:b2:57:d8 ce:e1:43:c0:11:8a	10.1.176.2 10.1.184.0 10.1.185.0

b)* Für Ihre Messungen müssen die Testbed-Server direkt miteinander kommunizieren (um Störfaktoren auszuschließen). Konfigurieren Sie die Interfaces der Verbindungen **A** und **B**, sodass die Server darüber kommunizieren können (in Tabelle 2.1). Der Netzwerkverkehr Ihrer Messung soll dabei nicht über das Management-Netz gehen und keine andere Kommunikation einschränken (z.B. den Aufruf einer Website).

Destination	NextHop	Iface	
		sse miteinander kommunizieren. Ge er erreichen können (ohne Begründ	
* Erklären Sie, wie Sie eir	nen konkreten Prozess auf dem	selben Server adressieren können	
* Die Kenfinanstien von	Advance view view timedlick Mith	IDvC solut diago automoticals Co	han Cia dia
		IPv6 geht diese automatisch. Ge seinen Interfaces mittels SLAAC z	
erver das Global-Unique F		P.R. Durch ein Router Advertisemer Sie die Global-Unique Adressen all nn dies nicht möglich ist).	
		gehen aus. Erweitern Sie das Netz ist und die bestehenden Adressen	
	as neue Netz in CIDR-Notation a		IIIIIIei IIoci

Aufgabe 3 Multiple Choice (9 Punkte)

Die folgenden Aufgaben sind Multiple Choice/Multiple Answer, d. h. es ist jeweils mind. eine Antwortoption korrekt. Teilaufgaben mit nur einer richtigen Antwort werden mit 1 Punkt bewertet, wenn richtig. Teilaufgaben mit mehr als einer richtigen Antwort werden mit 1 Punkt pro richtigem und –1 Punkt pro falschem Kreuz bewertet. Fehlende Kreuze haben keine Auswirkung. Die minimale Punktzahl pro Teilaufgabe beträgt 0 Punkte.

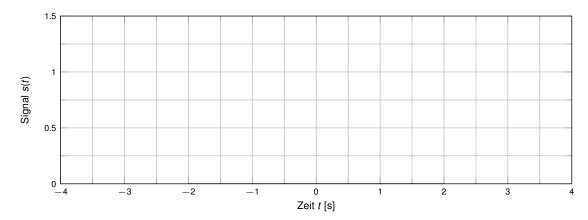
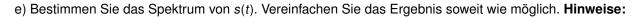
	htige Antworten a						X
	durch vollständig atworten können d	_			ut angekreuzt w	erden	×
GOUTOTIOT III			mao man	inorang orno	at angonioazi m	<i>5.4611</i>	_
a)* Welche Aussag	gen über DNS sin	d zutreffend?					
Jeder Resolv	ver ist auch ein au	itoritativer Names	server.				
☐ Ein SOA Red	cord enthält Inforr	nationen zur Syn	chronisie	rung mit sek	undären Names	ervern.	
☐ Ein Resolver	kontaktiert bei ei	ner iterativen Na	mensaufl	ösung nur ei	nen einzigen Na	meserve	er.
☐ Die TTL gibt	an, wie lange ein	Resource Recor	d gecach	ned werden d	arf.		
■ PTR Record	s müssen sich in	der selben Zone	wie die z	ugehörigen <i>A</i>	VAAAA Records	s befinde	∍n.
b)* Welches sind I	ceine gültigen DN	S Resource Rec	ords?				
TXT	☐ CNAME	■ MX		N	☐ NS		AAA
c)* Bei TCP hat FI	usskontrolle das 2	Ziel,					
<u></u>	k nicht zu überlas		1	Vachrichtenve	erlust festzustelle	en.	
─ Verbindunge	n zu bestätigen.		— П с	len Empfäng	er nicht zu überl	asten.	
_	_			1 0			
d)* Der Syscall se	 		П:	at mus für TOI	Cookata ainnya	ميرموير الد	ndbor
<u> </u>	Socket zur Übertr		_		Sockets sinnvo		
<u> </u>	ine Menge von So	ockets.			mind. ein Socket en) ein Timeout		vira oaer
erzeugt eine	n neuen Socket.				Server		
	_	NAT-Tabe al IP Addr Local 2.168.1.1 469	Port	Global Port 8005	185.86.235.241		
PC 192.16	1 19.	2.168.1.2 469	57	8006			
		P1 F		P2	Internet	\searrow	
PC		1: 192.168.1.254	IF2: 1	31.159.20.19	Internet	کر	
192.16	8.1.2						
e)* Gegeben sei ol Server. Was ist die					ickt einen HTTP	-Reques	t an den
127.0.0.1		185.86.23	5.241		192.168.1.2	254	
192.168.1.1		131.159.2	0.19		192.168.1.2	2	
f)* Gegeben sei ob bestehenden Verb Stelle P2 ?							
131.159.20.1	19	127.0.0.1			192.168.1.2	254	
1 85.86.235.2	241	П 192.168.1	.1		П 192.168.1.2)	

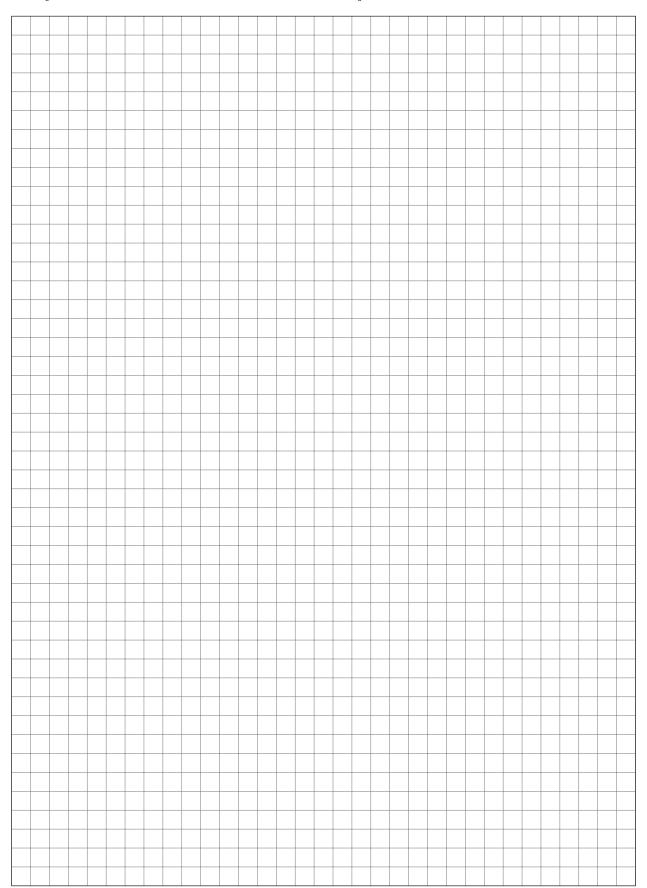
							halb der bereits nt an Stelle P1 ?
65535	;	443		800	6	46	57
8005		■ 80		465	8	1 02	24
Aufgab	e 4 Multiple	Choice (9	Punkte)				
korrekt. Teila mit mehr al	aufgaben mit n s einer richtige	ur einer richt en Antwort v	tigen Antwort verden mit 1	werden mit 1 Punkt pro ric	Punkt bewert htigem und -	et, wenn richt 1 Punkt pro	e Antwortoption ig. Teilaufgaben falschem Kreuz aufgabe beträgt
Kreuzen	Sie richtige Ar	ntworten an					\boxtimes
Kreuze k	können durch v	ollständiges/	Ausfüllen ges	strichen werd	den		
Gestrich	ene Antworten	können dur	ch nebensteh	ende Markie	rung erneut a	ingekreuzt we	erden X
	n seien der Re edene Spektre				puls $s_2(t)$. Un	tenstehende	Abbildung zeigt
	·,·,·,·,·,·,·,·,·,·,·,·,·,·,·,·,·,·,·,	(b) S ₂ (f)		C) S ₃ (f)		1) S ₄ (f)
\square $s_1(t) \circ$	 S ₁ (<i>f</i>)	\square $s_1(t)$	○ —• <i>S</i> ₃ (<i>f</i>)	$\square s_2(t)$	$\bigcirc \longrightarrow S_1(f)$	□ s ₂ ($t) \circ - S_3(f)$
\square $s_1(t) \circ$	 • <i>S</i> ₂ (<i>f</i>)	\square $s_1(t)$	○—• S ₄ (f)	\square $s_2(t)$	$\bigcirc - S_2(f)$	□ s ₂ ($t) \circ \longrightarrow S_4(f)$
	en seien ein Si ert hat der Sig					schleistung v	on $P_N = 10 \text{ mW}$.
☐ 10 bit	1 1	bit	□ 0dB	1		1 dB	□ 10 dB
Quantisieru							s der maximale ufen sind dafür
1 2	6	1 0	8	4	2	1 6	1 4
d)* Nebens	tehende Signa	lraumzuordr	nung stellt wel	che(s) Modu	lationsverfahr	en dar?	† ^Q
☐ 1-ASk	2	-PSK	2-QAM	2-,	ASK [1-PSK	
e)* Aus wie werk?	vielen Broadc	ast-Domäne	en besteht das	s nebenstehe	ende Netz-		
1	□ 3	2	4	5	6	_	
f)* Aus wie v	vielen Kollisions	sdomänen be	esteht das neb	enstehende	Netzwerk?		
1	3	5	2	4	6		

Aufgabe 5 Frequenzanalyse (18 Punkte)

Gegeben sei der Grundimpuls $g(t) = 1 - t^2$, welcher in Abständen von T = 2s periodisch wiederholt wird.

a)* Zeichnen Sie das resultierende periodische Signal s(t) in Abbildung 5.1.

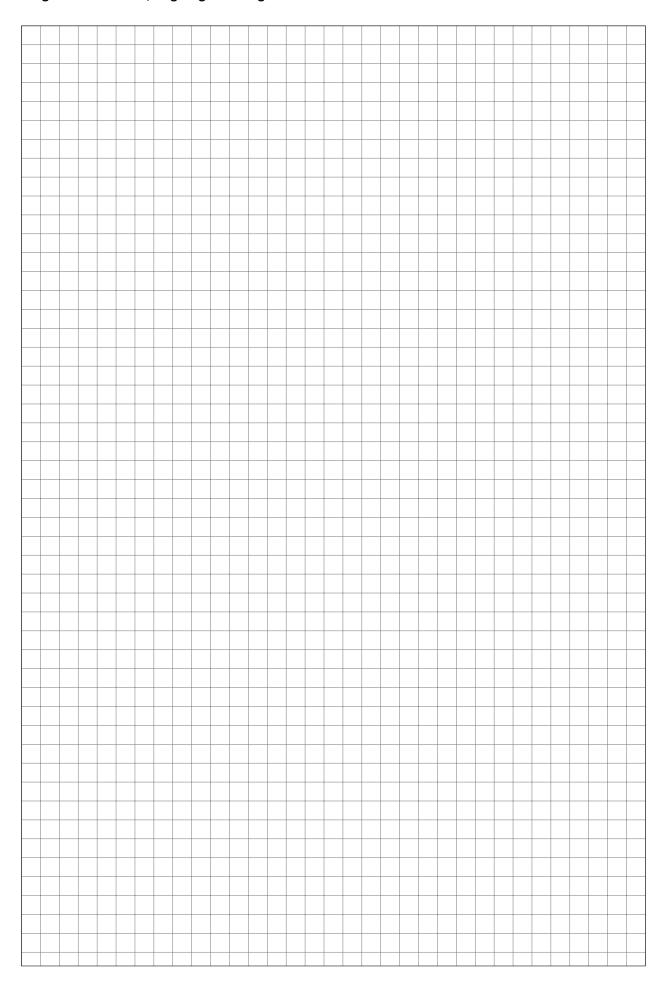




Abbildung 5.1: Periodisches Signal s(t)

0	b)*	Bes	stim	nmer	n Sie	e die	e Kro	eisf	req	uer	1Ζ ω	, de	es S	Sign	als	-															
0	c)*	Beg	grür	nden	Sie	kur	z, o	b z	ur F	-rec	que	nza	ınal	yse	eiı	ne f	-ou	rier	reil	ne (gen	utz	t we	erde	en k	kan	n.				
0	d)*	Bes	stim	nmer	n Sie	e de	n G	leic	har	nteil	l vo	n s	(t).	Ver	ein	facl	nen	Sie	e da	as l	Erg	ebn	is s	ow	eit	wie	mö	öglid	ch.		
2 3																															
4																															
						-																									
					_	+																								$\vdash\vdash$	

1. Nutzen Sie Symmetrien

$$2. \int x^2 \cos(cx) \, \mathrm{d}x = \frac{(c^2 x^2 - 2) \sin(cx) + 2cx \cos(cx)}{c^3} \ \text{und} \int x^2 \sin(cx) \, \mathrm{d}x = \frac{(2 - c^2 x^2) \cos(cx) + 2cx \sin(cx)}{c^3}$$


Aufgabe 6 Kanal- und Leitungskodierung (18 Punkte) a)* Erläutern Sie kurz in Ihren eigenen Worten, was Kanalcodes sind und wozu sie genutzt werden. b)* Erläutern Sie kurz in Ihren eigenen Worten, was Leitungscodes sind und wozu sie genutzt werden. Im Folgenden betrachten wir als Nachricht den String LOL. c)* Geben Sie den String ASCII-kodiert in binärer Darstellung an. Nutzen Sie dabei pro Zeichen 8 bit. Hinweis: Es empfiehlt sich, die binäre Nachricht in Gruppen zu je 4 bit anzugeben. Vor der Übertragung wird die Nachricht mit dem 4B5B-Code (siehe Tabelle 6.1) kodiert. d)* Wozu dient der 4B5B-Code? e) Begründen Sie, ob es sich beim 4B5B-Code um einen Kanalcode oder einen Leitungscode handelt. f) Geben Sie die binäre Nachricht aus Teilaufgabe c) an, nachdem sie mittels 4B5B kodiert wurde. Hinweis: Es empfiehlt sich, die binäre Nachricht in Gruppen zu je 5 bit anzugeben.

Eingabe	Ausgabe	Bedeutung	Eingabe	Ausgabe	Bedeutung
0000	11110	Hex data 0	1100	11010	Hex Data C
0001	01001	Hex data 1	1101	11011	Hex Data D
0010	10100	Hex data 2	1110	11100	Hex Data E
0011	10101	Hex data 3	1111	11101	Hex Data F
0100	01010	Hex data 4	-	00000	Quiet (Q)
0101	01011	Hex data 5	-	11111	Idle (I)
0110	01110	Hex data 6	-	11000	Start #1 (J)
0111	01111	Hex data 7	-	10001	Start #2 (K)
1000	10010	Hex data 8	-	01101	End (T)
1001	10011	Hex data 9	-	00111	Reset (R)
1010	10110	Hex data A	-	11001	Set (S)
1011	10111	Hex data B	-	00100	Halt (H)

Tabelle 6.1: 4B5B Kodierungstabelle

eb	en S	Sie c	ie e	rsten	10 t	oit de	er so	entste	ehend	den	Nach	richt a	n.								
								esetz (t <i>t</i> = (Signa	lverla	uf s(t)	für	die	erste	n 10) bit d	er
\perp																					
s(<i>t</i> 1	1																				
ļ ·																					
				2	3	3	4	5	6	5	7	8	9	10	11	t	/T				
 1	+																				
$^{+}$																					
+																					

Zusätzlicher Platz für Lösungen. Markieren Sie deutlich die Zuordnung zur jeweiligen Teilaufgabe. Vergessen Sie nicht, ungültige Lösungen zu streichen.

